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Abstract

The present thesis aims at an extension of the canonical formalism of Arnowitt,
Deser, and Misner (ADM) from self-gravitating point-like objects to self-gravitating
spinning objects. The ADM formalism allows for an efficient calculation of the con-
servative part of the dynamics in certain approximation schemes. Most important
for future gravitational wave astronomy, the post-Newtonian (PN) approximation
gives a good analytical handle on the inspiral phase of two compact objects like
black holes or neutron stars. The sought-for extension of the ADM formalism to
spinning objects would thus be very useful for subsequent applications, especially
higher order spin contributions to the PN approximation take priority here.

The extension of the ADM formalism to spinning objects succeeded in the present
thesis via an action approach to linear order in the single spins of the objects (which
includes spin(1)-spin(2) couplings). The found formalism shares certain similarities
with the canonical formulation of (classical) spin-1

2
Dirac fields coupled to gravity. In

particular the contributions of Kibble on the last-mentioned topic were inspiring for
the present work. Whereas the action approach leads to a canonical formalism linear
in spin that is not otherwise limited to a PN order, an order-by-order construction
of the canonical formulation is possible and performed as a verification. Important
for this approach is the global Poincaré group and its generators. By relying on a
specific form of total linear and angular momentum expressed in terms of canonical
variables (i.e., the generators of global translations and rotations), the results of the
action approach are recovered up to the formal 3.5PN order.

For a consistent approach towards the dynamics quadratic in spin one has to in-
clude the quadrupole deformation due to spin. Such a deformation crucially depends
on the details of the object and will be different for black holes and various models
of neutron stars (in particular sensible to the equation of state and other details of
those models). Both the action approach and an order-by-order construction are in
principle applicable to canonical formulations at higher orders in spin. The PN next-
to-leading order (NLO) spin(1)-spin(1) level was tackled, modeling the spin-induced
quadrupole deformation through a single parameter for each object.

New results within the PN approximation are the NLO spin(1)-spin(2) as well as
the spin(1)-spin(1) binary Hamiltonians. The NLO spin-orbit binary Hamiltonian
was reproduced. Up to and including 3PN all Hamiltonians for maximally rotating
bodies are now known. Further applications (or extensions) of the formalism as well
as of the already obtained results are discussed.

4



Zusammenfassung

Die vorliegende Dissertation1 hat die Erweiterung des kanonischen Formalismus von
Arnowitt, Deser und Misner (ADM), welcher gültig für nichtrotierende gravitativ
selbstwechselwirkende Punktmassen ist, auf rotierende gravitativ selbstwechselwir-
kende Objekte zum Ziel. Der ADM Formalismus erlaubt eine effiziente Berechnung
der konservativen Dynamik in bestimmten Näherungen. Die post-Newtonsche (PN)
Näherung ist äußerst gut für die Beschreibung des Einspiralens zweier kompakter
Objekte, z.B. schwarzer Löcher oder Neutronensterne, geeignet. Da dies bedeutsam
für zukünftige Gravitationswellenastronomie ist, soll die gesuchte Erweiterung des
ADM Formalismus primär auf Spineffekte in der PN Näherung angewandt werden.

Bis zur linearen Ordnung im Spin bzw. Eigendrehimpuls der jeweiligen Objek-
te (was Spin(1)-Spin(2) Wechselwirkungen einschließt) gelingt die Erweiterung des
ADM Formalismus über einen Wirkungszugang. Diese Herleitung ähnelt einer ent-
sprechenden Herleitung von Kibble für ein (klassisches) Spin-1

2
Dirac-Feld, welches

an die Gravitation gekoppelt wird. Während der Wirkungszugang zwar auf die li-
neare Ordnung im Spin beschränkt ist aber ansonsten für alle PN Ordnungen gilt,
kann der kanonische Formalismus mit Spin auch Ordnung für Ordnung konstruiert
werden. Dies dient hier als Verifikation. Entscheidend hierfür ist die globale Poin-
carégruppe und ihre Generatoren. Aufbauend auf eine bestimmte Form von Gesamt-
impuls und Gesamtdrehimpuls ausgedrückt durch kanonische Variablen (d.h. den
Generatoren globaler Translationen und Rotationen) kann so der Wirkungszugang
bis zur formalen 3.5PN Ordnung bestätigt werden.

Auf der quadratischen Ordnung im Spin muss die durch Rotation erzeugte Qua-
drupoldeformation berücksichtigt werden. Diese Deformation ist unterschiedlich groß
für schwarze Löcher und diverse Neutronensternmodelle (insbesondere besteht eine
Abhängigkeit von der Zustandsgleichung). Sowohl der Wirkungszugang als auch
die Konstruktion Ordnung für Ordnung können im Prinzip zur Herleitung des ka-
nonischen Formalismus auf höheren Ordnungen im Spin angewendet werden. Die
Spin(1)-Spin(1) Wechselwirkung wurde auf der ersten Ordnung nach der führenden
(next-to-leading order, NLO) behandelt.

Resultate für die Hamiltonfunktionen der NLO Spin-Bahn, NLO Spin(1)-Spin(2)
und NLO Spin(1)-Spin(1) Wechselwirkungen eines Binärsystems wurden gewonnen,
wobei die letzten beiden neu sind. Die Hamiltonfunktion für ein Binärsystem aus
Objekten mit maximalem Spin ist nun bis zur 3PN Ordnung bekannt.

1

”
Kanonische Formulierung des Eigendrehimpulses in der Allgemeinen Relativitätstheorie“
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1. Introduction

Though general relativity has seen and passed many experimental tests, one of its
most fascinating predictions, namely gravitational waves, has not been observed di-
rectly. However, observations of certain binary pulsar signals are in good agreement
with the energy loss predicted by general relativity due to gravitational waves, see,
e.g., [1]. This indirect observation of gravitational waves originates from Hulse and
Taylor (first found for the binary pulsar PSR B1913+16) and was awarded the Nobel
Prize in 1993. Nowadays there is less doubt that gravitational waves exist, and one
aims at a direct observation with assiduous efforts, both by experiments on Earth,
e.g., LIGO, VIRGO, GEO 600, and by the future space mission LISA [2]. The direct
measurement of gravitational waves is not only interesting, but would furthermore
open up an entirely new spectrum for astronomical observations. Such gravitational
wave astronomy is expected to have great impact on astrophysics and fundamental
physics [2], possibly starting a new era in these fields.

Beside the experimental challenge of measuring extraordinarily small relative
changes in length (. 10−21 detectable by now) there are important problems to
be solved on the theoretical side in order to successfully establish the new field of
gravitational wave astronomy. The theoretical challenge lies within the area of data
analysis, for both the noise dominated [3] and signal dominated [4] cases. An ac-
curate understanding and knowledge of the expected gravitational wave signals is a
key ingredient to allow faithful astronomical or astrophysical statements from the
data analysis process. An appealing source for gravitational waves is the inspiral
and merger of two compact objects, like black holes and neutron stars. The advan-
tage of this kind of source is its quite periodic behavior, which can be studied over
long periods of time. However, minute changes in frequency and amplitude of the
gravitational waves need to be predicted in an accurate way. While fully numerical
methods are ideal to study the very late inspiral (or plunge) and merger phases of
compact objects, the post-Newtonian approximation to general relativity provides
a good analytic handle on the inspiral phase and can give accurate predictions over
many orbits. The post-Newtonian approximation was pushed to high orders for
nonspinning objects, see, e.g., [5], and it is desirable to catch up to these orders for
the spinning case.

A successful and efficient way to calculate the conservative part of the dynamics
of two compact objects within the post-Newtonian approximation is based on the
canonical formalism of Arnowitt, Deser, and Misner (ADM). However, this formal-
ism has been coupled so far to nonspinning point-like objects only. The main goal
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1. Introduction

of the present thesis is to extend this coupling to spinning objects. Not only this
is useful for subsequent applications, but an interesting problem as such (though
rather mathematical). To linear order in spin the problem is solved using an ac-
tion approach, similar to a treatment of spin-1

2
Dirac fields coupled to gravity given

by Kibble [6]. Further, an order-by-order construction of the canonical formalism
with spin is given as a check. This construction is based on consistency conditions
on the formalism. In particular it is sufficient to rely on a certain form of total
linear and angular momentum expressed in terms of canonical variables in order
to reproduce the result of the action approach to next-to-next-to-leading order in
the post-Newtonian approximation. The assumed form of total linear and angu-
lar momentum, i.e., the generators of translations and rotations, guarantees that a
great part of the global Poincaré algebra is fulfilled. The connection to the action
approach is given by Noether’s theorem on conserved quantities.

Higher orders in spin correspond to quadrupole and even higher multipole correc-
tions. Both the action approach and an order-by-order construction are in principle
applicable to canonical formulations at higher orders in spin. However, only the
next-to-leading order spin(1)-spin(1) level will be tackled here. This requires a
modeling of the spin-induced quadrupole deformation, described by a single param-
eter for each object. This parameter is not only distinct for black holes and neutron
stars, for the latter kind of object it also depends on the assumed equation of state
or on other details of a particular theoretical neutron star model. If gravitational
wave astronomy becomes available with a high enough precision in the future, one
may hope to measure this (and maybe other) neutron star parameter.

The results obtained here within the post-Newtonian approximation cover the
next-to-leading order spin(1)-spin(2) and spin(1)-spin(1) conservative Hamiltonians.
The conservative next-to-leading order spin-orbit Hamiltonian was reproduced. For
maximally rotating bodies all Hamiltonians up to and including the third post-
Newtonian order are now known. A maximal rotating body is defined to have a
dimensionless spin (i.e., rescaled by the mass of the object and identical to the
dimensionless Kerr parameter for black holes) of value one, corresponding to an
extremal Kerr black hole. Notice that millisecond pulsars (or neutron stars) and
black holes can easily have dimensionless spins bigger than 1

10
(a rough approxima-

tion for the sun yields 1
5

[7]). Thus spins close to maximal ones are expected to be
astrophysically relevant. In this case the next-to-leading order spin Hamiltonians
obtained here are needed for an accurate description of the dynamics during the
inspiral phase. It was found recently in [8] that spin effects as such and in partic-
ular the orientations of the spins have a big impact on the event rates expected in
detectors, especially when spins are close to maximum.

If the fourth post-Newtonian order Hamiltonian for nonspinning objects could be
obtained in the future, the spin Hamiltonians calculated here would be applicable
to an even larger class of binaries (with smaller spins). Notice that the effective one-
body approach for nonspinning objects, see, e.g., [9], is able to cover such higher
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1. Introduction

post-Newtonian orders by calibration to numerical relativity and further provides
predictions for the full waveforms, including merger and ringdown phases. An ex-
tension of the effective one-body approach to spinning objects is possible [10]. Sub-
sequent implementation of higher order spin Hamiltonians seems to be interesting,
and was already performed for the next-to-leading order spin-orbit Hamiltonian [11].

Now the organization of the present thesis is given, with references to relevant
published work of the author for certain chapters (for a short review see also [12]).
In chapter 2 spinning objects in special and general relativity are reviewed. Further,
an overview of canonical formulations of general relativity is given, with emphasis
on the ADM formalism and coupling to nonspinning objects. In chapter 3 the action
approach to the canonical formulation of self-gravitating spinning objects to linear
order in spin is performed [13]. An order-by-order construction based on consistency
considerations is performed to next-to-next-to-leading order in chapter 4 [14, 15] as
a check. In chapter 5 first general quadrupole corrections to the equations of motion
and the stress-energy tensor are given [16] and then used to extend the canonical
formalism to spin-induced quadrupole deformation at next-to-leading order [17–19].
As an application of the formalism, conservative Hamiltonians at next-to-leading
order are derived in chapter 6. These are the spin-orbit [14] (derived earlier by
Damour, Jaranowski, and Schäfer), spin(1)-spin(2) [20], and spin(1)-spin(1) Hamil-
tonians, the latter was first derived for black holes [17, 18] and later for compact
objects in general (including neutron stars) [19]. Finally, conclusions and outlook
are given in chapter 7.

Lower case Latin indices from the beginning of the alphabet (a, b, . . . ) label the
individual spinning objects and then consequently take on values from one to the
number of objects. Three different frames are utilized in this thesis, denoted by
different indices. Greek indices (α, µ, . . . ) refer to the coordinate frame, upper
case Latin indices from the middle of the alphabet (I, J , . . . ) belong to a local
Lorentz frame, and upper case Latin indices from the beginning of the alphabet (A,
B, . . . ) denote the so called body-fixed Lorentz frame. Lower case Latin indices
from the middle of the alphabet (i, j, . . . ) are used for the spatial part of the
mentioned frames and are running through i = 1, 2, 3. In order to distinguish the
three frames when splitting them into spatial and time part, we write a = (0), (i)
for Lorentz indices (or a = (0), (1), (2), (3) in more detail), A = [0], [i] for the body-
fixed frame, and µ = 0, i for the coordinate frame. Indices appearing twice in a
product are implicitly summed over its index range, except for label indices of the
objects. Round and square brackets are also used for index symmetrization and
antisymmetrization, respectively, e.g., A(µν) ≡ 1

2
(Aµν +Aνµ). Partial derivatives are

denoted by ∂µ or by a comma as an index ,µ. Similarly, the 4-dimensional covariant
derivative is written as ||µ and the induced 3-dimensional one as ;i. A 3-dimensional
vector is also written in boldface, e.g., x. The signature of spacetime is taken to be
+2. Units are such that the speed of light c and the gravitational constant G are
equal to one. Other symbols are defined in this thesis on their first occurrence. For
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1. Introduction

convenience also a summary of defined symbols is given in the appendix.
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2. Preliminaries

This chapter gives a short review of the achievements regarding spin in the theory of
relativity as well as the canonical formulation of general relativity. Emphasis is put
on the problems to be solved if one aims at a canonical formulation of self-gravitating
spinning objects in the pole-dipole approximation.

2.1. Spin in Special Relativity

Spin already has very interesting properties in special relativity. Its canonical struc-
ture is obtained here as a consequence of the Poincaré algebra by introducing the
spin as a specific part of the total angular momentum.

2.1.1. Center, Spin, and Mass Dipole

The 4-dimensional total linear momentum P µ and total angular momentum Jµν =
−Jνµ of a physical system are conserved quantities due to Poincaré invariance. The
4-dimensional total spin tensor Sµν can then be defined by

Jµν = ZµP ν − P µZν + Sµν . (2.1)

That is, spin is the difference of total angular momentum and its orbital part.
However, a different choice for the yet arbitrary center Zµ of the system will result in
a different spin Sµν (with Jµν being unchanged). This just expresses the dependence
of angular momenta on the choice of a reference point. Separating time and space
components

J ij = ZiP j − P iZj + Sij , J i0 = ZiE − P it+ Si0 , (2.2)

one infers that the spin transforms as

Sij → Sij + δZiP j − P iδZj , Si0 → Si0 + δZiE , (2.3)

under a change of the center Zi → Zi− δZi. E ≡ P 0 is the total energy and t ≡ Z0

the time coordinate. Notice that J i0 is the total mass dipole of the system at t = 0
relative to the coordinate origin, so (2.2) tells us that Si0 is the mass dipole relative
to the center Zi. This explains the transformation property (2.3). One may also
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2.1. Spin in Special Relativity

fast & heavy

slow & light

∆ZiV i

spin

Figure 2.1: If a spinning spherical symmetric ob-
ject moves with a velocity V i to the left, its
upper hemisphere moves faster with respect
to the reference system than its lower hemi-
sphere. Thus the upper hemisphere has a
higher relativistic mass than the lower one —
the object acquires a mass dipole E∆Zi. [22]

describe the 3-dimensional spin Sij as the flow dipole and Sµν as the 4-dimensional
dipole moment of the system relative to the center Zi.

By its definition (2.1), Sµν transforms as a tensor under Lorentz boosts, with
interesting consequences. In classical mechanics the center of mass, i.e., the center
for which the mass dipole vanishes, is independent of the reference frame. In special
relativity such a center can in general not be found. Under a Lorentz boost all
components of Sµν transform, so if the mass dipole Si0 vanishes in one reference
frame, it will only be zero in all others if the system has no spin, Sµν = 0. A
nice graphic interpretation is given by figure 2.1. Notice that a spinning system in
special relativity has a minimal extension of the order S/M orthogonal to the axis
of rotation [21, 22]. Here S is the spin length, 2S2 = SµνSµν , and M is the rest mass
of the system, M2 = −P µPµ. In general relativity, S/M is the radius coordinate of
the ring singularity of Kerr spacetime [23].

However, by virtue of (2.3) one can always choose the center Zi such that the
mass dipole Si0 vanishes in one specific reference frame characterized by a timelike
vector fµ. That is, the center is then the center of mass as observed in this frame.
It holds

Sµνfν = 0 , (2.4)

which is the so called spin supplementary condition. This condition fixes the cen-
ter and ensures that the spin tensor Sµν has three independent components only.
Basically three important such conditions can be found in the literature [22, 24],

fµ = Pµ , or SµνPν = 0 , (2.5)

fµ = −δ0
µ , or S̃µ0 = 0 , (2.6)

fµ = Pµ −Mδ0
µ , or ŜµνPν −MŜµ0 = 0 . (2.7)

In the following, we will indicate center and spin belonging to the second condition
[21, 24] by a tilde, Z̃i and S̃µν , a hat relates to the third condition [24, 25], Ẑi and
Ŝµν , while center and spin of the first condition [26] are just denoted by Zi and Sµν .
We call Zi the center of inertia, Z̃i the center of mass, and Ẑi the center of spin
[22]. Notice that the first condition is manifestly covariant, and is called covariant

13



2. Preliminaries

spin supplementary condition here. A different covariant condition is discussed in
section 2.2. The third condition is called canonical spin supplementary condition,
which will be explained in the following.

2.1.2. Poincaré Algebra

The Poincaré group is one of the most important groups in physics. Its generators
P µ and Jµν obey the Poisson bracket realization of the well-known Poincaré algebra

{P µ, P ν} = 0 , {P µ, Jρσ} = −ηµρP σ + ηµσP ρ , (2.8)

{Jµν , Jρσ} = −ηνρJµσ + ηµρJνσ + ησµJρν − ησνJρµ , (2.9)

where ηµν is the Minkowski metric. Splitting space and time one gets, see, e.g, [27],

{Pi, Pj} = 0, {Pi, E} = 0, {Ji, E} = 0, {Gi, Pj} = Eδij, {Gi, E} = Pi ,
(2.10)

{Ji, Pj} = εijkPk, {Ji, Jj} = εijkJk, {Ji, Gj} = εijkGk, {Gi, Gj} = −εijkJk,
(2.11)

with the total angular momentum vector Ji = 1
2
εijkJ

jk and the 3-dimensional Levi-
Civita symbol εijk. The boost vector J i0 has an explicit dependence on time t, which
was split off as

J i0 = Gi − P it . (2.12)

This defines the vector Gi, which is related to the spin supplementary condition
S̃µ0 = 0 with center of mass Z̃i by Gi = Z̃iE, cf. (2.2).

Notice that in general relativity total linear and angular momentum can be defined
for asymptotically flat spacetimes as global quantities by certain surface integrals.
In this case all considerations of this and the following section remain valid in full
general relativity, see section 4.1.3.

2.1.3. Canonical Structure

Using Z̃i = Gi/E, S̃ij = Jij − Z̃iPj + PiZ̃
j and the Poincaré algebra (2.10, 2.11),

the Poisson brackets between Pi, Z̃
i , and S̃ij follow as

{Z̃i, Pj} = δij , {Z̃i, Z̃j} = − S̃ij
E2

, {S̃ij, Z̃k} =
PiS̃kj
E2

+
PjS̃ik
E2

, (2.13)

{S̃ij, S̃kl} = PkiS̃jl − PkjS̃il − PliS̃jk + PljS̃ik , (2.14)

all other zero, where

Pij = δij −
PiPj
E2

, P−1
ij = δij +

PiPj
M2

, (2.15)
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2.2. Spin in General Relativity

and δij is the Kronecker symbol.
Now we proceed to the canonical spin supplementary condition (2.7), which can

be written as (E +M)Ŝi0 = ŜijPj. From (2.3) and S̃i0 = 0 we get

Ẑi − Z̃i = δZi = − Ŝ
i0

E
=

PkŜki
E(E +M)

. (2.16)

Having δZi, Eq. (2.3) relates Ŝij and S̃ij by

S̃ij = Ŝij +
PjPkŜki
E(E +M)

− PiPkŜkj
E(E +M)

. (2.17)

Contraction with Pi leads to EPiS̃ij = MPiŜij. Finally, in terms of S̃ij one has

Ẑi = Z̃i +
PkS̃ki

M(E +M)
, Ŝij = S̃ij +

PiPkS̃kj
M(E +M)

− PjPkS̃ki
M(E +M)

. (2.18)

The Poisson brackets (2.13, 2.14) transform into1

{Ẑi, Pj} = δij , {Ŝij, Ŝkl} = δikŜjl − δjkŜil − δilŜjk + δjlŜik , (2.19)

all other zero. Thus Ẑi, Pj, and Ŝij are canonical variables. This realization is due

to Pryce [24, 28]. Newton and Wigner further showed that Ẑi is the only center
with this property [25].

Similarly, we can proceed to the covariant spin supplementary condition (2.5) by

Zi = Ẑi +
PkŜki

M(E +M)
, Sij = Ŝij +

PiPkŜkj
M(E +M)

− PjPkŜki
M(E +M)

, (2.20)

and find the Poisson brackets,

{Zi, Zj} = PikPjl
Skl
M2

, {Sij, Zk} =
PimPjn
M2

(PmSnk + PnSkm) , (2.21)

{Zi, Pj} = δij , {Sij, Skl} = P−1
ki Sjl − P

−1
kj Sil − P

−1
li Sjk + P−1

lj Sik , (2.22)

all other zero.
To conclude, there are several possibilities for spin supplementary conditions and

centers, however, only (2.7) leads to canonical variables, (2.19). This is an important
fact for a canonical formulation of spin in general relativity.

2.2. Spin in General Relativity

It is well-known that spin in general relativity leads to certain gravitomagnetic
effects, see, e.g., [29]. In this section the pole-dipole approximation for compact
objects is introduced, providing an analytic description of spin in general relativity.

1 Notice that Poisson brackets with M were calculated according to its definition M2 = E2−PiPi.
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2. Preliminaries

2.2.1. Gravitational Skeleton

In electrostatics, the multipole approximation of a charge density ρ,

ρ(x) =

(
q − qi∂i +

1

2!
qij∂i∂j − . . .

)
δ(x) , (2.23)

can be obtained from a Taylor series of its Fourier transform in the form

ρ(k) =

(
q + iqiki +

1

2!
i2qijkikj + . . .

)
(2π)−3/2 , (2.24)

by the well-known transition formulas for the Dirac delta distribution δ(x) ↔
(2π)−3/2 and partial coordinate derivative ∂i ↔ −iki. Here x = (xi) are the spatial
coordinates and k = (ki) the corresponding ones in Fourier space. The quantities
q, qi, and qij are the electric monopole, dipole, and quadrupole. The potential φ
follows as

φ = −4π∆−1ρ =

(
q − qi∂i +

1

2!
qij∂i∂j − . . .

)
1

|x|
, (2.25)

where ∆ = ∂i∂i is the Laplacian and ∆−1 its inverse operator (with the usual
boundary conditions). In most textbooks, the multipole approximation is derived
directly for the potential or the field. Notice that the multipole approximation
breaks down at high values of k, i.e., in the ultraviolet, or at small values of x in
the potential. This is the reason for the divergent self-energy of the approximated
charge density (2.23).

Now the multipole approximation is applied to the stress-energy tensor T µν . As
it is desirable to have a manifestly covariant approximation scheme, we write

√
−gT µν =

∫
dτ

[
tµνδ(4) − (tµναδ(4))||α +

1

2!
(tµναβδ(4))||(αβ) − . . .

]
. (2.26)

Here τ is the proper time of a representative worldline zρ(τ), g the determinant
of the 4-dimensional metric gµν , δ(4) = δ(xρ − zρ(τ)), and tµν... are 4-dimensional
covariant multipole moments. If one performs the τ integration in (2.26) by elimi-
nating the time part of δ(4) and writes the covariant derivatives as partial derivatives
and Christoffel symbols, then (2.26) indeed takes on the form of (2.23). Equation
(2.26) in substance is Mathisson’s gravitational skeleton [30], but in the form given
by W. M. Tulczyjew [31]. Interestingly enough Mathisson unknowably used a test-
function formulation of the delta distribution, years before this formulation was used
by Laurent Schwartz for his mathematically rigorous Théorie des Distributions [32].

The divergent self-interactions already present in electrostatics become more se-
vere if the field equations are nonlinear. If the distributional stress-energy tensor
(2.26) is used as a source for a nonlinear field equation, products of distributions will
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2.2. Spin in General Relativity

appear, which lack a mathematical definition. However, this problem can be over-
come, as in quantum field theory, by a regularization and renormalization program.
In particular, dimensional regularization [33] is most useful for theories involving
gauge freedoms, like general relativity. Dimensional regularization has been em-
ployed successfully in post-Newtonian calculations [34–36] to a high order of nonlin-
earity. However, many treatments of multipole approximations in general relativity
avoid these problems by considering (2.26) for test bodies only, which by definition
are neglected as a source of the gravitational field.

The relation between source multipoles related to T µν used here and field mul-
tipoles [37] was considered in [38]. Only for linear theories like electrostatics this
relation is straightforward.

2.2.2. Pole-Dipole Approximation

The stress-energy tensor (2.26) must fulfill

T µν ||ν = 0 . (2.27)

This corresponds to Mathisson’s variational equations of mechanics [30] and imposes
certain conditions on the multipole moments. In the pole-dipole approximation only
monopole tµν and dipole tµνα are kept in (2.26). Evaluating (2.27) one sees that tµν

and tµνα can be expressed in terms of a vector pµ and an antisymmetric tensor Sµν ,
which have to fulfill the dynamic equations

DSµν

dτ
= 2p[µuν] ,

Dpµ
dτ

= −1

2
R

(4)
µρβαu

ρSβα , (2.28)

with uµ = dzµ

dτ
, D the 4-dimensional covariant differential, and R

(4)
µρβα the 4-dimen-

sional Riemann tensor defined by

aµ||αβ − aµ||βα = R
(4)
νµαβa

ν , (2.29)

for an arbitrary aµ. The stress-energy tensor can be written as

√
−gT µν =

∫
dτ

[
u(µpν)δ(4) −

(
Sα(µuν)δ(4)

)
||α

]
. (2.30)

pµ and Sµν are the linear momentum and spin of the object and now play the role
of monopole and dipole moment. Their equations of motion were already derived
by Mathisson [30] within his manifestly covariant formalism, albeit restricted to a
specific spin supplementary condition. In the general form (2.28) they were first
given by Papapetrou [39], however, his method was not manifestly covariant. W. M.
Tulczyjew gave a derivation of (2.28) as well as of the stress-energy tensor (2.30) in

17



2. Preliminaries

a manifestly covariant way [31], using essentially Mathisson’s method. Further im-
portant rederivations have been performed in [40, 41]. Higher multipole corrections
will be discussed in section 5.1.

Obviously a spinning object in general relativity does not follow a geodesic. For
test bodies this effect can be studied numerically, see, e.g., [42, 43]. Further, without
giving a relation between pµ and uµ, the system of equations (2.28) is not closed.

2.2.3. Spin Supplementary Condition

A spin supplementary condition (2.4) must be preserved in time. Using (2.28) this
leads to a relation between pµ and uµ [44],

pµ =
1

−fαuα

(
−fνpνuµ + Sµν

Dfν
dτ

)
, (2.31)

and thus, for a suitable fν , closes the system of equations (2.28). A good spin
supplementary condition is the covariant one,

Sµνpν = 0 , (2.32)

or fµ = pµ, which has been suggested in the context of general relativity in [31].
Indeed, this condition guarantees existence and uniqueness of a corresponding world-
line zρ(τ) [45]. The mass quantity m, pµp

µ = −m2, and the spin length S, 2S2 =
SµνS

µν , are conserved for this condition. A covariant condition has the advantage
that the relation between pµ and uµ (2.31) is manifestly covariant. However, also
the noncovariant condition S̃µ0 = 0 was applied in general relativity [46].

A different covariant condition is given by

Sµνuν = 0 , (2.33)

or fµ = uµ, which was used in both special [47] and general relativity [30, 48].
While there are no serious objections to use this condition, as it closes the system of
equations (2.28), it has some features which are usually not wanted. The condition
(2.33) does not uniquely specify a worldline. Instead, the worldline depends on the
choice of initial conditions and in general performs a kind of classical Zitterbewegung
around the worldline defined by (2.32), see [31, 43]. As quadrupole corrections
are needed to describe a black hole at the quadratic level in spin [37], we will
only consider the pole-dipole approximation at linear order in spin here. Then the
conditions (2.32) and (2.33) are fully equivalent and it holds pµ = muµ.

As a generalization of the canonical spin supplementary condition (2.7) to general
relativity one could take

Ŝµνpν +mŜµνnν = 0 , (2.34)

with some timelike unit vector nν . However, it needs to be proven if or under which
conditions (2.34) leads to canonical variables.
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2.3. Canonical Formulation of General Relativity

Finally, contraction of the first relation in (2.28) with uν leads to the well-known
formula

pµ = −uνpνuµ −
D(Sµν)

dτ
uν . (2.35)

This relation, however, does not close the system of equations (2.28), it just is a
component of (2.28).

2.3. Canonical Formulation of General Relativity

In this section the canonical formalism of ADM [49, 50] is introduced. Possible
couplings to matter are reviewed, and point-masses are treated in detail. Finally
alternatives to the ADM approach are discussed.

2.3.1. The ADM Formalism

The Einstein-Hilbert action of general relativity WG is given by a spacetime integral
over the Lagrangian density LG as

WG[gµν ] =

∫
d4xLG , LG =

1

16π

√
−gR(4) , (2.36)

where R(4) is the 4-dimensional Ricci scalar. Alternatively the action can be varied
with respect to the tetrad field eIµ instead of gµν , see section 3.1.3. In order to find a
canonical form of this action it is convenient to perform a splitting of spacetime into
a stack of 3-dimensional hypersurfaces with constant time coordinate t. In these
coordinates the unit normal vector nµ, nµn

µ = −1, of the hypersurfaces has the
components

nµ = (−N, 0, 0, 0) , or nµ =
1

N
(1,−N i) , (2.37)

where N is the lapse function and N i the shift vector. With the help of the projector2

γµν = gµν + nµnν =

(
0 0
0 γij

)
, (2.38)

this splitting can be constructed in a geometrical way, see, e.g., [51]. The 3-
dimensional hypersurfaces have an induced metric gij = γij, with γikγ

kj = δij, a
Riemann tensor Rijkl, a Ricci tensor Rij, and a Ricci scalar R. These quantities are
intrinsic geometric objects of the hypersurfaces, whereas the extrinsic curvature

Kij ≡ −n(i||j) =
1

2N

(
−γij,0 + 2Nk

;(iγj)k
)
, (2.39)

2Notice that 0 = nµγ
µν = −Nγ0ν and thus γ0ν = 0 for our choice of the time coordinate.
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depends on their embedding in spacetime.
Applying this splitting of spacetime to the Lagrangian density LG leads to

LG =
1

16π
N
√
γ
[
R +KijK

ij − (γijK
ij)2
]

+ (td) , (2.40)

where (td) denotes a total divergence, which is neglected for now. Instead of varying
with respect to the ten independent components of gµν , we now use γij, N , and N i.
Notice that no time derivatives of N and N i appear. In order to obtain a canonical
formulation we have to introduce the field momentum

πij = 16π
∂LG
∂γij,0

=
√
γ(γijγkl − γikγjl)Kkl , (2.41)

where (2.39) was used. This can be inverted as

Kij =
1

2
√
γ

(γijγkl − 2γikγjl)π
kl . (2.42)

The Legendre transformed Lagrangian density then reads

LG =
1

16π
πijγij,0 −NHfield +N iHfield

i + (td) , (2.43)

Hfield = − 1

16π
√
γ

[
γR− γijγklπikπjl +

1

2

(
γijπ

ij
)2
]
, Hfield

i =
1

8π
γijπ

jk
;k ,

(2.44)

and the action is additionally varied with respect to πij now. Notice that N and
N i play the role of Lagrange multipliers after Legendre transformation, the corre-
sponding constraints are the vanishing of Hfield and Hfield

i .
A subsequent gauge fixing is subtle as it requires a fine-tuning of the action, see,

e.g., [52]. As shown in [50, 53, 54] by different methods, see also [55], one must
replace the total divergence in (2.43) by − 1

16π
Ei,i for asymptotically flat spacetimes,

where Ei = γij,j − γjj,i. This is related to the total energy E of asymptotically flat
spacetimes by

E =
1

16π

∮
d2siEi , (2.45)

where
∮

d2si denotes an integral over the asymptotic boundary of a spatial hyper-
surfaces at fixed time. This ADM energy will turn out to be the generator of time
evolution after gauge fixing. For further discussion of boundary terms in the action
of general relativity, also for the case of not asymptotically flat spacetimes, see, e.g.,
[56]. However, for asymptotically flat spacetimes the gravitational Hamiltonian may
be written as

HG =

∫
d3x (NHfield −N iHfield

i ) + E[γij] . (2.46)
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2.3. Canonical Formulation of General Relativity

Indeed, the action has the canonical structure momentum πij times velocity γij,0
minus Hamiltonian HG. Variation thus results in Hamilton’s equations

∂πij

∂t
= −16π

δHG

δγij
≡ {πij, HG} ,

∂γij
∂t

= 16π
δHG

δπij
≡ {γij, HG} , (2.47)

where δ denotes the variational derivative here and the equal-time Poisson brackets
are given by

{γij(x), πkl(x′)} = 16πδk(iδj)lδ(x− x′) . (2.48)

Before gauge fixing, the surface term E has no impact on these field equations, which
could be obtained from local variations3. As further explained in section 2.3.3, the
gauge fixing is accompanied with solving the constraints Hfield = 0 and Hfield

i = 0,
so HG then turns into the ADM energy E. To make this more concrete, we choose
the ADM transverse-traceless gauge conditions

∂j(γij − 1
3
γkkδij) = 0 , πii = 0 , (2.49)

in which the transverse-traceless decomposition of γij and πij may be written as

γij =

(
1 +

φ

8

)4

δij + hTT
ij , (2.50)

πij = π̃ij + πijTT , (2.51)

where hTT
ij and πijTT are transverse-traceless, e.g, hTT

ii = hTT
ij,j = 0, and the longitu-

dinal π̃ij is related to a vector potential π̃i = ∆−1πij,j by

π̃ij = π̃i,j + π̃j ,i −
1

2
δijπ̃

k
,k −

1

2
∆−1π̃k,ijk . (2.52)

The advantage of this gauge is that in (2.50) there is a trace term but no longitudinal
part related to a vector potential, while in (2.51) it is the other way around. Because
of the orthogonality of the individual parts of the transverse-traceless decomposition,
the kinetic term πijγij,0 in the action turns into πijTThTT

ij,0. Then only the transverse-
traceless parts remain dynamical variables. Now the four field constraints can be
solved for the four nondynamical variables φ and π̃i in terms of hTT

ij and πijTT.
An analytic solution for φ and π̃i, however, can in general only be given in some
approximation scheme. Notice that ADM introduced two slightly different gauges
[50], the one used here was actually seldom used by ADM themselfes. However,
the gauge used here is better for applications, as the form of the trace term in
(2.50) is adapted to the Schwarzschild metric in isotropic coordinates (with obvious
advantages for perturbative expansions). The action turns into

WG[hTT
ij , π

ijTT] =
1

16π

∫
d4x πijTThTT

ij,0 −
∫

dtHADM , (2.53)

3However, one should not constrain to local variations for asymptotically flat spacetimes [54].

21



2. Preliminaries

where the ADM Hamiltonian HADM is just the ADM energy E expressed in terms
of the gauge-reduced canonical variables hTT

ij and πijTT,

HADM = E[hTT
ij , π

ijTT] = − 1

16π

∫
d3x∆φ[hTT

ij , π
ijTT] . (2.54)

Notice that the surface integral (2.45) was written as a volume integral now and the
asymptotic behavior of φ was used. The action must be varied only with respect
to the independent components of hTT

ij and πijTT, which is ensured with the help of
the transverse-traceless projector

δTTkl
ij = 1

2
[(δik −∆−1∂i∂k)(δjl −∆−1∂j∂l) + (δil −∆−1∂i∂l)(δjk −∆−1∂j∂k)

− (δkl −∆−1∂k∂l)(δij −∆−1∂i∂j)] .
(2.55)

The Poisson brackets after gauge fixing correspondingly read

{hTT
ij (x), πklTT(x′)} = 16πδTTkl

ij δ(x− x′) . (2.56)

2.3.2. Matter Couplings

Point-masses are the simplest kind of matter that can be coupled to general relativ-
ity. Its contribution to the action is just

WM [gµν , z
µ] =

∫
dτ LM , LM = −m

√
−gµν(zρ)uµuν . (2.57)

This action is invariant under a change of the parameter τ , which simplifies the
variation as no constraint of the form uµu

µ = −1 is needed. m is assumed to be a
constant. Variation of the action leads to the equations of motion

D

dτ

[
uµ

√−uρuρ

]
= 0 . (2.58)

These equations only have a unique solution if a gauge for τ is chosen. The Einstein
field equations now have a source T µν ,

Rµν
(4) −

1

2
gµνR(4) = 8πT µν , with

√
−gT µν ≡ 2

δWM

δgµν
, (2.59)

and Rµν
(4) the 4-dimensional Ricci tensor. The singular stress-energy tensor density

reads explicitly
√
−gT µν =

∫
dτ
mu(µuν)

√−uρuρ
δ(4) . (2.60)

The 4-dimensional momentum is introduced as

pµ =
∂LM
∂uµ

= m
uµ√−uρuρ

. (2.61)
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It obviously holds4

LM =
∂LM
∂uµ

uµ = pµu
µ . (2.62)

Thus a Legendre transformation leads to a vanishing canonical (i.e., defined as usual)
Hamiltonian. Its place is taken by the mass-shell constraint

pµp
µ +m2 = 0 , (2.63)

which has to be added to the action via a Lagrange multiplier λ(τ), as further
explained in the next section. This constraint is a consequence of the inability
to express uµ uniquely in terms of pµ, which in turn is due to invariance under
reparametrization, or gauging, of τ . Indeed, it is a common feature of reparametriza-
tion invariant actions that the canonical Hamiltonian vanishes and the time evolu-
tion is instead generated by certain constraints. As seen in the last section this also
holds for general relativity, whose action is invariant under reparametrizations of
spacetime, or general coordinate transformations.

Up to now the matter action was transformed into5

WM [gµν , z
µ, pµ, λ] =

∫
dτ (pµu

µ −HMτ ) , HMτ = λ(gµνpµpν +m2) . (2.64)

Notice that the Hamiltonian HMτ generates an evolution with respect to the ar-
bitrary parameter τ . Further the variation δpµ leads to uµ = 2λpµ and from the
mass-shell constraint (2.63) one thus has λ = 1

2m

√−uµuµ. It may be checked that
the equations of motion for pµ and the stress-energy tensor are equivalent to the ones
above, which justifies the Legendre transformation in the presence of constraints.
More on constrained Hamiltonian dynamics is discussed in the next section. By
solving the constraint and applying the gauge choice τ = z0 ≡ t, or u0 = 1, the
action is expressed in terms of the independent variables pi and zi. It holds

p0 = (γ0
µ − n0n

µ)pµ = g0iγ
ijpj +Nnp , (2.65)

where np ≡ nµpµ. From the constraint we get

(γµν − nµnν)pµpν +m2 = 0 ⇒ np = −
√
m2 + γijpipj . (2.66)

Further we have

0 = ni = nµgµi =
1

N
(g0i −N jgji) ⇒ g0i = γijN

j . (2.67)

4Due to Euler’s theorem, this actually holds for any Lagrangian which is a homogeneous function
of degree one in the velocity uµ. This in turn is required by reparametrization invariance.

5Fields within the matter action are always taken at the position zµ from now on.

23



2. Preliminaries

Putting all together we arrive at

WM [γij, N,N
i, zi, pi] =

∫
dt (piż

i−HM) , HM = −p0 = −Nnp−N ipi , (2.68)

where a dot ˙ denotes the total time derivative d
dt

. The original Hamiltonian HMτ

vanishes by virtue of the constraint. Variation of the matter variables zi and pi
results in Hamilton’s equations with HM as the matter part of the Hamiltonian.
Thus zi and pi have the Poisson brackets {zi, pj} = δij, all other zero. As in the last
section, the variables γij, π

ij, N , and N i are now used for the gravitational field.
The gauge fixing procedure is analogous to the last section, there are just certain

matter corrections to the field constraints following from the N - and N i-variations,

H ≡ Hfield +Hmatter = 0 , Hi ≡ Hfield
i +Hmatter

i = 0 , (2.69)

where
Hmatter = −np δ =

√
m2 + γijpipj δ , Hmatter

i = piδ , (2.70)

with δ = δ(x − z). The first relation in (2.69) is called the Hamilton constraint,
while the second one is the momentum constraint. The ADM Hamiltonian HADM

still results from the ADM energy by solving the field constraints using the gauge
conditions (2.50, 2.51), but now also depends on the matter variables zi and pi, which
have entered via source terms of the constraints. All field and matter interaction
terms in the action,

W =
1

16π

∫
d4x πijTThTT

ij,0 +

∫
dt

[
piż

i −HADM

]
, (2.71)

are contained in the ADM Hamiltonian, or the ADM energy. This is a unique
feature of general relativity, and still holds for couplings to other matter and even
other fields [53].

Finally we review the most important couplings of matter and fields to gravity that
have received a canonical formulation, see also [57]. Besides for point-masses [50, 58],
such canonical formulations were found for fluids [59], massive scalar fields [55, 60],
spin-1

2
Dirac fields [6, 61–64], and gauge spin-1 fields, including Maxwell [60, 65] and

Yang-Mills [66]. Problematic from a canonical point of view are derivative-coupled
theories [57], like Dirac fields and also pole-dipole objects. It is thus fortunate that
the sought-for canonical formulation of pole-dipole objects will be seen to resemble to
Dirac fields coupled to gravity, for which a canonical formulation was found. Though
the classical spin of pole-dipole objects is not restricted in its size, we consider pole-
dipole objects only at linear order in spin here. This means the spin is treated as
an infinitesimal quantity and thus formally takes on the smallest (nonzero) classical
value, which seems to give rise to similarities to the minimal (nonzero) quantized
spin 1

2
of Dirac fields. Thus the achievements on canonical formulations of Dirac
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fields coupled to gravity served as a very useful guide here, in particular the paper
of Kibble [6]. However, an additional problem to be solved for spinning objects in
general relativity concerns the canonical spin supplementary condition. So far the
canonical formulation of spinning objects was found for test-bodies in an external
gravitational field [67], see also the very recent work in [44].

2.3.3. Other Formalisms and Constrained Hamiltonian Dynamics

Before gauge fixing, general relativity possesses a canonical formulation in the pres-
ence of the constraints H = 0 and Hi = 0. There exists a general framework to
handle such a constrained Hamiltonian dynamics, which was developed most notably
by Dirac as a general route to canonical quantization [68], see also [52, 69, 70]. Fur-
ther important work was done by Bergmann and his collaborators, but focused on
general relativity and its canonical quantization [71]. Though Dirac also considered
the canonical formulation of general relativity [72], his approach is formulated in a
very general way. Early work on this subject can even be traced back to Rosenfeld
[73]; for a historical review, see, e.g, [74, 75]. A particular important achievement of
ADM for canonical general relativity was the identification of the ADM Energy as
the Hamiltonian after gauge fixing [49, 76]. Yet another canonical treatment of gen-
eral relativity was given by Schwinger [55]. This formulation is similar to the ADM
one, essentially only different variables were used and many more such reformula-
tions are possible. A further very appealing formulation was given by Ashtekar [77],
in whose variables the gravitational constraints considerably simplify, and which
forms the basis of loop quantum gravity, see, e.g., [78].

We will now summarize some of the results of Rosenfeld, Dirac, and Bergmann
on constrained Hamiltonian dynamics. In the last section the mass-shell constraint
(2.63) manifests the inability to uniquely express the velocity uµ in terms of the
corresponding momentum pµ. The standard route to a Hamiltonian seems to be
impassable in such a situation as the Legendre transformation can not be applied
in its usual way. The solution, however, is simple. The Legendre transformation
may formally be performed as usual if one adds the emerging constraints via La-
grange multipliers to the action. The additional degrees of freedom introduced by
these multipliers correctly parametrize the ambiguity present in the relation between
velocities and momenta. Further, it can be shown that the dynamics of the trans-
formed action is equivalent to the dynamics of the original action. The constraints
arising at this stage are entitled as primary and the Hamiltonian is called the to-
tal Hamiltonian (or Dirac Hamiltonian), as it includes the primary constraints via
Lagrange multipliers.

The next step in the analysis of constrained Hamiltonian dynamics consists of
evaluating the consistency requirement that all primary constraints must be pre-
served under the time evolution given by the total Hamiltonian. Of course, some
of the resulting consistency conditions can be identically fulfilled or lead to contra-
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dictions (then the dynamics must be considered as inconsistent). Moreover some
conditions are restrictions for the Lagrange multipliers appearing in the total Hamil-
tonian. Due to linearity of the total Hamiltonian in the Lagrange multipliers, these
restrictions are actually linear equations. Further, one might also obtain new (in-
dependent) constraints from the consistency conditions. Such new constraints are
called secondary constraints. For these new constraints the same consistency re-
quirement applies, and one is eventually lead to further conditions on the Lagrange
multipliers and/or to further secondary constraints and so on. Finally, one ends up
with a complete set of constraints and linear equations for the Lagrange multipliers.

The linear equations for the Lagrange multipliers can be used to eliminate certain
linear combinations of these multipliers from the equations of motion. The usual sit-
uation known from courses on classical mechanics is that all multipliers are uniquely
fixed. However, in the general case some combinations of Lagrange multipliers could
remain unfixed and thus remain as arbitrary degrees of freedom in the equations of
motion. The interpretation is that these degrees of freedom are physically irrelevant
and correspond to a gauge freedom of the theory. That is, the corresponding inde-
pendent Lagrange multipliers can be chosen at will, interpreted as choosing a gauge.
Hamiltonian formulations of gauge theories will inevitably involve constraints.

The Lagrange multipliers enter the total Hamiltonian together with the primary
constraints. Instead of characterizing the gauge freedom of a theory by undeter-
mined combinations of Lagrange multipliers, one can give a description in terms of
corresponding primary constraints. For this purpose it is useful to introduce the
notion of first class and second class constraints. First class constraints are defined
to have vanishing Poisson brackets with all other constraints. A constraint that
is not first class is called second class. In addition to being first or second class,
the constraints can still be primary or secondary, and one thus has four categories
of constraints now. An important fact is that the number of independent primary
first class constraints is equal to the number of unfixed Lagrange multipliers in the
equations of motion and thus to the number of gauge degrees of freedom.

Not only the primary first class constraints but also all secondary first class con-
straints are related to gauge symmetries [79, 80] (at least under certain reasonable
conditions), see also [75]. To be more precise, all first class constraints, primary as
well as secondary, appear in the generators of gauge symmetries on phase space. The
algebra of first class constraints is therefore related to the algebra of gauge symmetry
generators of the theory. For general relativity, the algebra of first class constraints
reads [53, 55] (at least for the vacuum case and for coupling to point-masses)

{H(x),H(x′)} =−
[
Hi(x)γij(x) +Hi(x

′)γij(x′)
]
∂jδ(x− x′) , (2.72)

{Hi(x),H(x′)} =−H(x) ∂iδ(x− x′) , (2.73)

{Hi(x),Hj(x
′)} =−Hj(x) ∂iδ(x− x′)−Hi(x

′) ∂jδ(x− x′) . (2.74)

If one goes to the constraint surface by H = 0 = Hi, then the right-hand sides
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2.3. Canonical Formulation of General Relativity

vanish. Thus H and Hi are indeed first class. In order to relate this algebra to
4-dimensional diffeomorphism invariance one should include lapse and shift as well
as corresponding momenta into phase space [79]. It should be noted that though the
total Hamiltonian of general relativity (2.46) is composed of the first class constraints
and looks quite similar to the generator of gauge transformations, the time evolution
given by this Hamiltonian is not just a gauge effect, see, e.g, [81].

One can elaborate more on the distinction between first and second class con-
straints. Obviously one can recombine the whole set of constraints into some equiv-
alent set. We consider the case that such a recombination brings as many constraints
as possible from the second class into the first class. One can then show by a re-
ductio ad absurdum that the matrix cab = {ψa, ψb}, where ψa are the constraints
that remain second class after recombination6, is invertible, det(cab) 6= 0. The Dirac
bracket {A,B}∗ between two phase space functions A and B is then defined by

{A,B}∗ = {A,B} − {A,ψa}(c−1)ab{ψb, B} . (2.75)

This bracket satisfies the laws known from the Poisson bracket. Further, it leads
to the correct equations of motion together with the total Hamiltonian. The Dirac
bracket can thus be used as a substitute for the Poisson bracket. However, whereas
one may use the constraints only after all Poisson brackets were calculated7, the
second class constraints ψa = 0 can be used before an application of the Dirac
bracket without changing the result (e.g., one has {A,ψa}∗ = 0 for all A and ψa).
If one restricts to use the Dirac bracket instead of the Poisson bracket, one can use
the second class constraints ψa = 0 to solve for certain phase space variables and
eliminate them from all quantities. Then one has performed an actual reduction
of the degrees of freedom. Within this formalism, gauge conditions are constraints
added by hand that bring all (or just some) first class constraints into the second
class. The reduction of degrees of freedom via gauge fixing then follows with the
help of the Dirac bracket in a straightforward way.

6The indices a and b label constraints in this section.
7For a more detailed exposition it is useful to introduce the concepts of weak and strong equality.
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3. Action Approach

In this chapter an extension of the ADM formalism for point-masses to the pole-
dipole approximation is obtained linear in spin. The derivation is based on a corre-
sponding extension of the point-mass action.

3.1. Action of the Spherical Top

It is remarkable that equations of motion (2.28) and stress-energy tensor (2.30) in
the pole-dipole approximation are independent of the specific object, i.e., are the
same for black holes and neutron stars. It is thus expected that any specific action
for a spinning object coupled to general relativity will contain (2.28) and (2.30) to
some approximation (e.g., linear in spin). The pole-dipole action found here will be
based on the simplest spinning object imaginable — the spherical top.

3.1.1. Newtonian Case

The spherical top is well-known in classical mechanics. However, we review it here in
a way that allows an easy transition to the special relativistic treatment in [69, 82].
We consider in this section a top with its center of mass resting at the coordinate
origin. The center of mass motion can be added easily. The top can be described as
a rigid body consisting of many point-masses labeled by an index a, with positions
zia and masses ma. In terms of body-fixed (constant) coordinates z

[i]
a it holds zia(t) =

Λ[j]i(t)z
[j]
a , with a time-dependent rotation matrix Λ[j]i, Λ[k]iΛ[k]j = δij. Here and

in the following we will indicate 3-dimensional indices in the body-fixed coordinate
system by square brackets. The rotation matrix can be expressed in terms of three
independent angle variables, Λ[i]j = Λ[i]j(ϕ1, ϕ2, ϕ3), e.g., the Euler angles. The
antisymmetric1 angular velocity tensor is given by Ωij = Λ[k]iΛ̇[k]j. A spherical top is
completely characterized by one moment of inertia I, it holds 2

∑
amaz

[i]
a z

[j]
a = Iδij.

The Lagrangian of the free spherical top then reads

L(Λ[i]j,Ωij) =
1

2

∑
a

maż
i
aż
i
a =

1

4
IΩijΩij =

1

2
IΩiΩi , (3.1)

1The antisymmetry immediately follows from the time derivative of Λ[k]iΛ[k]j = δij .
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3.1. Action of the Spherical Top

where Ωi = 1
2
εijkΩ

jk is the usual angular velocity vector. The spin is the generalized
momentum of the angular velocities of the form

Sij = 2
∂L

∂Ωij
= IΩij . (3.2)

Legendre transformation leads to

L =
1

2
SijΩ

ij −H , (3.3)

with the Hamiltonian H(Λ[i]j, Sij) = 1
4I
SijSij. This specific Hamiltonian is actually

independent of Λ[i]j.
In order to derive the general Euler-Lagrange equations of the Lagrangian (3.3)

we are not varying the independent angle variables, but instead use δθij = Λ[k]iδΛ[k]j

as independent variations. Notice that δθij is antisymmetric, and thus indeed cor-
responds to three independent variations of the angle variables. The result is

Ωij = Λ[k]iΛ̇[k]j = 2
∂H

∂Sij
, Ṡij = 2Sk[iΩj]k − Λ[k]i ∂H

∂Λ[k]j
+ Λ[k]j ∂H

∂Λ[k]i
. (3.4)

These are Hamilton’s equations for Λ[k]j and Sij. The Poisson brackets fulfill

Ȧ = {A,H}+
∂A

∂t
, (3.5)

for a general quantity A. Comparing with (3.4) we can read off

{Λ[i]j,Λ[k]l} = 0 , {Λ[i]j, Skl} = Λ[i]kδlj − Λ[i]lδkj , (3.6)

{Sij, Skl} = δikSjl − δjkSil − δilSjk + δjlSik . (3.7)

Alternatively one could use canonical variables based on the angle variables,

{ϕi, pϕj } = δij, with pϕi =
∂L(ϕj, ϕ̇k)

∂ϕ̇i
, (3.8)

as in most textbooks. Further, if the Hamiltonian is independent of Λ[i]j, which will
always be the case in the following, the spin length is a constant and it is possible
to describe each spin by only two independent canonical variables instead of six
contained in Sij and Λ[i]j, see, e.g., [83, 84]. However, we prefer the variables Sij
and Λ[i]j here.

3.1.2. Special Relativistic Case

In the relativistic case there are no rigid bodies. However, one can define a top in
a purely mathematical way [69, 82, 85] as a worldline with a Lorentz matrix ΛAµ,
ηABΛAµΛBν = ηµν , such that ΛAµ is a pure rotation,

ΛAµ =

(
−1 0
0 Λ[i]j

)
, (3.9)
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3. Action Approach

in some frame defined by fµ. (Upper case Latin indices from the beginning of the
alphabet refer to the body-fixed frame and have the values A = [0], [i].) This can
be formulated as

Λ[0]µ =
fµ√
−fνf ν

, or η[0]A = − ΛAµfµ√
−fνf ν

. (3.10)

It holds

Ωµν = ΛA
µdΛAν

dτ
, Sµν = 2

∂L(uµ,Ωµν)

∂Ωµν
, pµ =

∂L(uµ,Ωµν)

∂uµ
, (3.11)

see, e.g, [69] or the next section. The spin supplementary condition belonging to
(3.10) reads

Sµνf
µ = 0 . (3.12)

It will be seen in section 5.2.2 in which sense this belongs to (3.10). Notice that
only three relations of (3.10) are independent, e.g., one could equivalently require
Λ[i]µfµ = 0 only. The same holds for (3.12).

There are many ways to implement the conditions (3.10) and (3.12) in an action
approach, see, e.g., [47, 69, 82]. We require here that (3.10) and (3.12) are preserved
under the time evolution given by the action and try to directly construct such an
action. An alternative, rather indirect, approach would be to add the supplementary
conditions to some action with the help of Lagrange multipliers. As well known from
classical mechanics, this modifies the dynamics by constraint forces, which ensure
that the supplementary conditions are preserved in time. However, one should
carefully check the consistency, in particular one should be able to find a solution
for the Lagrange multipliers. Also no further (secondary) constraints should appear,
which would be physically unacceptable (we want to have exactly three independent
rotational degrees of freedom). Finally, the Lagrange multipliers can be eliminated
from the action, leading to a dynamics which preserves the constraints and thus to
the action we try to find directly here.

3.1.3. Minimal Coupling to Gravity

The next logical step is a minimal coupling of the special relativistic spherical top
defined in the last section to gravity. Such a coupling was already treated in [86]
based on the developments in [82]. In [87] even nonminimal couplings leading to
higher multipole corrections were considered2. Notice that [88] is not a further
development of [87], but is a completely different action approach. More recently
yet another approach was given in [89] with focus on an application to the post-
Newtonian approximation.

2This obviously goes beyond a spherical top, however, the formalism stays the same.
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3.1. Action of the Spherical Top

The matter variables ΛAµ have the problem that they fulfill

ΛAµΛA
ν = gµν . (3.13)

That is, ΛAµ is not independent under variation of the metric. For the Dirac field, one
has a similar problem with the gamma matrices γµ, as it holds γµγν + γνγµ = 2gµν .
This problem can be overcome by writing ΛA

µ = ΛAIeIµ and treating ΛAI and the
tetrad field eIµ as independent variables. From

ΛAIΛ
A
J = ηIJ , or γIγJ + γJγI = 2ηIJ , (3.14)

it is obviously now consistent that ΛAI and γI are constant under variations of the
tetrad field eIµ. We have three bases involved, a body-fixed basis, a local Lorentz
basis (denoted by upper case Latin indices from the middle of the alphabet), and a
coordinate basis. The field equations are obtained by an unconstrained variation of
eIµ. The metric gµν = eIµe

I
ν as well as the connection are not varied independently.

For the variation of ΛAI one has to take into account the condition (3.14).
In [86, 87, 89] matter and field degrees of freedom are not clearly separated in the

action. For example, in [87] the equations of motion for the matter variables were
obtained by adding (3.13) as a constraint to the action with the help of Lagrange
multipliers, whereas the field equations were obtained from an unconstrained varia-
tion of ΛAµ. However, we need to separate matter and field degrees of freedom here,
which is essential for the canonical reduction in the next sections.

The covariant angular velocity in the local Lorentz basis can be defined as

ΩIJ = ΛA
I DΛAJ

dτ
= ΛA

I

[
dΛAJ

dτ
− ΛA

Kωµ
KJ(zρ)uµ

]
. (3.15)

Here ωµ
IJ are the Ricci rotation coefficients, eIαeJβωµ

IJ = −Γ
(4)
βαµ + eKα,µeKβ, and

Γ
(4)
αµν = 1

2
(gαµ,ν + gαν,µ − gµν,α) is the 4-dimensional Christoffel symbol of first kind.

Notice that the covariant derivative does not act on indices referring to the body-
fixed frame. The matter action shall be of the general form

WM [eIµ, z
µ,ΛAI ] =

∫
dτ LM(uµ,Ωµν , gµν(z

ρ)) . (3.16)

The Lagrangian LM is restricted to depend on the velocities uµ and Ωµν = eI
µeJ

νΩIJ

only, and not on the “coordinates” zµ and ΛAI directly. This ensures the covariance
of the action. The action shall be invariant under reparametrizations, so uµ is not
constrained. If we let the Lagrangian depend on the curvature tensor, we would
include quadrupole corrections, see section 5.2. An important relation is given by
(2c) in [82] or (9) in [87], which reads here

0 =
∂LM
∂uα

uβ + 2
∂LM
∂Ωαν

Ωβν − 2
∂LM
∂gβν

gαν , (3.17)
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and is a consequence of LM being a scalar3. Similar to section 3.1.1, the Euler-
Lagrange equations are obtained with the help of the antisymmetric variations
δθIJ = ΛA

IδΛAJ , e.g.,

δΩIJ =
DδθIJ

dτ
+ 2ΩK

[IδθJ ]K −R(4)
µν

IJuνδzµ − D

dτ

(
ωµ

IJδzµ
)
− uµδωµIJ . (3.18)

The δθIJ -variation then leads to

D

dτ

[
∂LM
∂Ωµν

]
=
∂LM
∂Ωµρ

Ωρ
ν −

∂LM
∂Ωνρ

Ωρ
µ . (3.19)

The δzµ-variation is subtle as it is not manifestly covariant, see, e.g., the second last
term in (3.18). This is due to the fact that ΛAI is held constant for the variation
of the worldline δzµ, which is not a covariant process (e.g., in contrast to a parallel
transport of ΛAI to the new worldline). However, using the equations of motion for
ΛAI , (3.19), and the covariance of LM , (3.17), the result of the δzµ-variation reads

D

dτ

[
∂LM
∂uµ

]
= −R(4)

µν
αβuν

∂LM
∂Ωαβ

, (3.20)

and is manifestly covariant now. Further, by virtue of (3.17) we can write (3.19) as

2
D

dτ

[
∂LM
∂Ωµν

]
=
∂LM
∂uµ

uν −
∂LM
∂uν

uµ . (3.21)

At last, the field equations follow from the δeIµ-variation as

Rµν
(4) −

1

2
gµνR(4) = 8πT µν , with

√
−gT µν ≡ eI

µ δWM

δeIν
, (3.22)

where the left-hand side results from the Einstein-Hilbert part (2.36) and the stress-
energy tensor density

√
−gT µν reads explicitly

√
−gT µν =

∫
dτ

[
u(µgν)α∂LM

∂uα
δ(4) −

(
2
∂LM
∂Ωαβ

gαρgβ(µuν)δ(4)

)
||ρ

]
. (3.23)

Here the important relation (3.17) was used again and the antisymmetric part

√
−gT [µν] =

∫
dτ

[
− D

dτ

(
∂LM
∂Ωαβ

)
+ 2

∂LM
∂Ωαρ

Ωρ
β

]
gα[µgν]βδ(4) = 0 , (3.24)

vanishes, see (3.19). Indeed, (3.19) is equivalent to T [µν] = 0.

3Loosely speaking, one can read (3.17) as “the number of upper indices minus the number of lower
indices in LM is zero.” This is derived in [87] from an infinitesimal coordinate transformation.
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3.1. Action of the Spherical Top

Comparing (2.28) and (2.30) with (3.20), (3.21), and (3.23) we get

Sµν = 2
∂LM
∂Ωµν

, pµ =
∂LM
∂uµ

, (3.25)

as in the special relativistic case. It should be noted that the given derivation
basically follows along the lines of Bailey and Israel [87], but the used variables
are similar to Porto [89], which resembles to [69]. However, the variables that
are varied here differ from both [87] and [89]. The relation between pµ and uµ is
fixed by (3.25), which means that the action already implements a specific spin
supplementary condition, cf. Eq. (2.31). If this would not be the case, then (3.25)
should be of the form (2.35), which is impossible due to the assumed absence of
accelerations in the action. The approach in [82, 86] includes accelerations of the
worldline coordinate. Further, a noncovariant supplementary condition (e.g., the
canonical one) will result in a not manifestly covariant relation between pµ and
uµ, (3.25), and thus one needs a not manifestly covariant action. An approach via
Lagrange multipliers as discussed in section 3.1.2 seems to be better when using
such conditions from the start. Here we will start with the covariant supplementary
conditions and go over to the canonical ones later by a change of variables.

Now we have to find a suitable reparametrization-invariant Lagrangian. An intu-
itive guess is (see section 5.2 for more elaborated considerations)

LM =
1

√−uρuρ

[
m0uµu

µ +
I

4
ΩµνΩ

µν

]
, (3.26)

where m0 and I shall be constants. Then it holds

Sµν =
IΩµν√−uρuρ

, pµ =

(
m0 +

1

4I
SµνS

µν

)
uµ√−uρuρ

, (3.27)

and the dynamical mass m =
√−pµpµ is given by

m = m0 +
1

4I
SαβS

αβ , (3.28)

or m = m0 to linear order in spin. Then (3.27) agrees with (2.31) for fµ = pµ
at linear order in spin, which implies that the corresponding spin supplementary
condition (3.12) is preserved in time. (3.10) only needs to be preserved to zeroth
order in spin, which is also the case (see also section 5.2.2). Due to reparametrization
invariance, LM must be a homogeneous function of degree one in the velocities and
Euler’s theorem leads to

LM =
∂LM
∂uµ

uµ +
∂LM
∂Ωµν

Ωµν = pµu
µ +

1

2
SµνΩ

µν . (3.29)

A Legendre transformation in uµ and Ωµν thus leads to a vanishing result. Further,
the mass-shell constraint (2.63) follows from (3.27), but no constraint on Sµν arises

33



3. Action Approach

from (3.27) as opposed to [69]. (Indeed, in [69] the action was constructed such that
the constraint (3.12) arises directly from the action in this way.) Similar to section
2.3.2 we finally have

WM [eIµ, z
µ, pµ, Sµν ,Λ

AI , λ] =

∫
dτ

[
pµu

µ +
1

2
SµνΩ

µν −HMτ

]
, (3.30)

with the function4 HMτ containing the mass-shell constraint only, HMτ =λ(gµνpµpν+
m2). This is the extension of (2.64) to the pole-dipole approximation at linear order
in spin. We could also add the supplementary conditions,

Siνp
ν = 0 , Λ[i]JpJ = 0 , (3.31)

to the action with the help of Lagrange multipliers. However, this will not change the
dynamics as these (independent) conditions are already preserved in time and their
Lagrange multipliers therefore vanish. Reference [13] immediately started with the
action in the form of Eq. (3.30) without the detailed derivation given in this section.

3.2. Reduction of the Matter Variables

Next a fully reduced canonical formalism is derived. For this the action is put
on the constraint surface. That is, all supplementary conditions, constraints, and
gauge conditions are solved in terms of certain truly independent variables that
parametrize the constraint surface. The equations of motion for this reduced num-
ber of variables could then be obtained by varying the action with respect to these
variables. However, we will transform the action to a new set of reduced variables
such that the equations of motion can easily be seen to resemble to Hamilton’s equa-
tions. This allows for an easy identification of the Hamiltonian and corresponding
Poisson brackets. Thus a fully reduced canonical formalism for spinning objects cou-
pled to general relativity is found [13]. Remember that the necessity for a variable
transformation to obtain standard canonical Poisson brackets is already present in
the flat space case, see (2.20). A treatment using Dirac brackets (2.75) seems to
be more complicated, as one has to consider the brackets for each pair of variables
then, whereas here we only have to handle the action (a single scalar).

The derivation sketched above is very similar to the treatment of Dirac fields
coupled to gravity by Kibble [6]. In this section we concentrate on the matter part
of the action only.

4Notice that HMτ is not a Hamiltonian as 1
2SµνΩµν in (3.30) also contains interaction terms.
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3.2.1. Reduced Matter Action

Similar to section 2.3.2 we solve the matter constraints (now including the supple-
mentary conditions (3.31)) as

np ≡ nµpµ = −
√
m2 + γijpipj , (3.32)

nSi ≡ nµSµi =
pkγ

kjSji
np

= γijnS
j , Λ[j](0) = Λ[j](i) p(i)

p(0)
, Λ[0]I = −p

I

m
,

(3.33)

in terms of the independent variables pi, Sij, and Λ[i](k). On the constraint surface
it holds HMτ = 0.

For simplicity, we will immediately constrain ourselves to the Schwinger time
gauge [55],

e(0)µ = −nµ , (3.34)

see also [6, 61, 64], as lapse and shift then turn into Lagrange multipliers in the
matter action [13], like in the ADM formalism for nonspinning objects. This gauge
condition effectively reduces the tetrad eIµ to a triad e(i)j, it holds

e(0)
i = 0 = e(i)

0 , e(0)
0 = N = 1/e(0)

0 , e(i)
0 = N je(i)

j , (3.35)

N i = −Ne(0)
i , γij = e(m)

ie(m)j , γij = e(m)
ie(m)j . (3.36)

A further convenient gauge choice is τ = z0 = t for the yet arbitrary parameter τ .
In terms of the independent variables the matter Lagrangian (3.29) reads explicitly

LM =

[
pi +KijnS

j + Akle(j)ke
(j)
l,i −

(
1

2
Skj +

p(knSj)
np

)
Γkji

]
żi

+
nSi

2np
ṗi +

[
S(i)(j) +

nS(i)p(j) − nS(j)p(i)

np

]
Λ[k]

(i)Λ̇[k](j)

2

+ Aije(k)ie
(k)

j,0 −
∫

d3x (NHmatter −N iHmatter
i ) ,

(3.37)

with the 3-dimensional Christoffel symbols Γkji, the abbreviation Aij defined by

γikγjlA
kl =

1

2
Sij +

nSipj
2np

, (3.38)

and the matter parts of the gravitational constraints given by

Hmatter = −np δ −Kij pinSj
np

δ − (nSkδ);k , (3.39)

Hmatter
i = (pi +KijnS

j)δ +

(
1

2
γjkSikδ + γjk

p(inSk)

np
δ

)
;j

. (3.40)
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These coincide with the densitized projections

Hmatter =
√
γTµνn

µnν , Hmatter
i = −√γTiνnν , (3.41)

of the stress-energy tensor (2.30) at linear order in spin. For consistency this must of
course be the case, as the gravitational constraints can also be obtained by such pro-
jections of the Einstein equations directly, instead of by varying the action with re-
spect to N and N i. However, in spite of the simplifying premature (but only partial)
gauge fixing (3.34) of the tetrad, the matter Lagrangian (3.37) is still complicated
compared to the nonspinning case (2.68). In particular, the canonical structure is
not immediately visible in the used variables.

3.2.2. Canonical Matter Variables

One already knows from special relativity that the variables in the covariant spin
supplementary condition have quite complicated Poisson brackets. Thus the compli-
cated structure of the matter action in these variables found in the last section is not
surprising. We will now try to simplify the structure of the matter Lagrangian by
introducing new variables, which will turn out to possess standard canonical Poisson
brackets. These new variables are indicated by a hat. An intuitive guess from the
special relativistic case (2.20) is

zi = ẑi− nSi

m− np
, nSi = −pkγ

kjŜji
m

, Sij = Ŝij−
pinSj
m− np

+
pjnSi
m− np

, (3.42)

belonging to the condition (2.34), as well as

Λ[i](j) = Λ̂[i](k)

(
δkj +

p(k)p
(j)

m(m− np)

)
, (3.43)

see (3.60c) in [69]. These redefinitions replace Akl in (3.37) by the quantity Âij given
by

γikγjlÂ
kl =

1

2
Ŝij +

mp(inSj)
np(m− np)

. (3.44)

Then the first line of (3.37) suggests to introduce a new linear momentum for the
matter as

p̂i = pi +KijnS
j + Âkle(j)ke

(j)
l,i −

(
1

2
Skj +

p(knSj)
np

)
Γkji , (3.45)

which reduces to p̂i = pi in the special relativistic case. The matter Lagrangian now
turns into (still approximating linear in spin)

LM = p̂i ˙̂z
i +

1

2
Ŝ(i)(j)Ω̂

(i)(j) −HM , (3.46)
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3.2. Reduction of the Matter Variables

where Ω̂(i)(j) = Λ̂[k]
(i) ˙̂

Λ[k](j) and

HM = −Âije(k)ie
(k)

j,0 +

∫
d3x (NHmatter −N iHmatter

i ) . (3.47)

Notice that Λ̂[i](k) is a 3-dimensional rotation matrix, Λ̂[k]
(i)Λ̂[k](j) = δij. Therefore

Ω̂(i)(j) is antisymmetric and should be interpreted as an angular velocity tensor. The
action thus has the canonical structure momenta times velocities minus Hamiltonian
HM . The Poisson brackets for the matter part read

{ẑi, p̂j} = δij , {Λ̂[i](j), Ŝ(k)(l)} = Λ̂[i](k)δlj − Λ̂[i](l)δkj , (3.48)

{Ŝ(i)(j), Ŝ(k)(l)} = δikŜ(j)(l) − δjkŜ(i)(l) − δilŜ(j)(k) + δjlŜ(i)(k) , (3.49)

all other zero, similar to (3.6, 3.7). It is important that all extrinsic curvature terms
are eliminated from (3.37, 3.39, 3.40) by the redefinition of the linear momentum
(3.45). Terms of this type are the reason for potential problems with derivative-
coupled theories [57], so it is good that they disappear. This is similar to the Dirac
field case, which can be made a nonderivative-coupled theory by a redefinition of
the Dirac field. Further the ṗi-term in (3.37) was removed by the redefinition of the
position (3.42).

If we consider test spinning bodies in an external field, then one immediately gets
the fully reduced Hamiltonian in the time gauge by inserting the metric (i.e., γij, N ,
and N i) as well as a suitable triad e(k)i (subject only to e(k)ie

(k)
j = γij) into (3.47).

Canonical formulations of test spinning bodies were already obtained in [67] by a
direct construction of the symplectic structure and also very recently in [44] using a
Dirac bracket approach. In the latter paper the Hamiltonian was explicitly obtained
for the Kerr metric. In the next section we will also be able to put the field part
into canonical form.

Given the fact that, at least in the time gauge (3.34), the supplementary condition
(2.34) leads to a canonical spin and position variable, it seems to be simpler to
immediately start with an action implementing (2.34), thus skipping the need for
variable redefinitions. However, one can not be sure in advance that (2.34) leads
to canonical variables. Further, it should be noted that only the structure of the
action was simplified by above redefinitions. The redefinitions still have to be applied
to (3.39, 3.40), making these expressions more complicated, see (6.33–6.35). Thus
one has a conservation of trouble here and starting directly with (2.34) does not
seem to simplify the calculation. In fact, it could be subtle to correctly implement
the noncovariant condition (2.34) into the action. However, this succeeded for test
spinning objects in [44].
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3.3. Full Gauge Reduction

The discussion of the field part is not as simple as for nonspinning objects. First, we
need the tetrad form of the ADM formalism as derived in [62]. Second, the matter
action depends on the partial time derivative of the tetrad, which necessitates matter
corrections to the canonical field momentum. Indeed, the canonical momentum
conjugate to e(k)j is given by

π̄(k)j = 8π
∂(LG + LM)

∂e(k)j,0

= e(k)
i π

ij + 8πe(k)
i Â

ij δ̂ , (3.50)

where LM is the density version of (3.46), obtained by introducing δ̂ = δ(xi − ẑi)
in certain terms, and πij is still given by (2.41). Remember that (3.39, 3.40) do
not contain the extrinsic curvature after redefining the matter variables. Legendre
transformation leads to

W =
1

8π

∫
d4x π̄(k)je(k)j,0 +

∫
dt

[
p̂i ˙̂z

i +
1

2
Ŝ(i)(j)Ω̂

(i)(j) −H
]
, (3.51)

H =

∫
d3x

(
NH−N iHi + λijπ

[ij]
)

+ E[γij] , (3.52)

where H ≡ Hfield +Hmatter and Hi ≡ Hfield
i +Hmatter

i with (2.44) and (3.39, 3.40). In
tetrad gravity one has the additional constraint π[ij] = 0, or π̄[ij] = 8πÂ[ij]δ̂, which
was added to the Hamiltonian H via a Lagrange multiplier λij = −λji.

3.3.1. Spatial Symmetric Gauge

The constraint π[ij] = 0 is eliminated by a further partial gauge fixing now. The
spatial symmetric gauge for the triad e(i)j = eij = eji is imposed, which was sug-
gested by Kibble for a canonical formulation of the Dirac field coupled to gravity [6]
(however, Kibble was using the Schwinger canonical formalism [55]). In this gauge,
the triad is the symmetric matrix square-root of the positive definite induced metric,
eijejk = γik, or

(eij) =
√

(γij) . (3.53)

Thus the triad is fully given in terms of the metric, which is now the variable to be
varied. We may therefore define an object Bkl

ij as

2Bkl
ij = emi

∂emj
∂γkl

− emj
∂emi
∂γkl

, (3.54)

which enables us to write

e(k)
ie(k)j,µ = Bkl

ij γkl,µ +
1

2
γij,µ . (3.55)
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3.3. Full Gauge Reduction

The action obviously takes on the form

W =
1

16π

∫
d4x π̂ijγij,0 +

∫
dt

[
p̂i ˙̂z

i +
1

2
Ŝ(i)(j)Ω̂

(i)(j) −H
]
, (3.56)

H =

∫
d3x

(
NH−N iHi

)
+ E[γij] , (3.57)

with the new canonical field momentum conjugate to γij given by

π̂ij = πij + 8πÂ(ij)δ̂ + 16πBij
klÂ

[kl]δ̂ . (3.58)

We have thus reduced the tetrad form of the ADM formalism to its metric form,
still coupled to spinning objects.

3.3.2. ADM Transverse-Traceless Gauge

Finally, the gauge fixing for the induced metric follows along the same lines as for
nonspinning objects in section 2.3.2. We apply the gauge conditions

∂j(γij − 1
3
γkkδij) = 0 , π̂ii = 0 . (3.59)

However, notice that the ADM transverse-traceless condition for the canonical field
momentum π̂ii = 0 differs from the original one, πii = 0. Correspondingly we now
have the decomposition

π̂ij = ˆ̃πij + π̂ijTT , ˆ̃πij = ˆ̃πi,j + ˆ̃πj ,i −
1

2
δij ˆ̃π

k
,k −

1

2
∆−1 ˆ̃πk,ijk , (3.60)

instead of (2.51). The decomposition for the metric (2.50) is still valid. The ADM
Hamiltonian then results from solving the field constraints H = 0 = Hi together
with the gauge conditions as

HADM = E[ẑi, p̂i, Ŝ(i)(j), h
TT
ij , π̂

ijTT] = − 1

16π

∫
d3x∆φ , (3.61)

and the fully reduced Poisson brackets of the field read

{hTT
ij (x), π̂klTT(x′)} = 16πδTTkl

ij δ(x− x′) , (3.62)

all other zero. The Poisson brackets (3.48, 3.49) of course still hold. The fully
reduced action finally reads

W =
1

16π

∫
d4x π̂ijTThTT

ij,0 +

∫
dt

[
p̂i ˙̂z

i +
1

2
Ŝ(i)(j)Ω̂

(i)(j) −HADM

]
. (3.63)

This is the extension of the nonspinning case in (2.71). The new spin interactions
enter via the ADM Hamiltonian HADM after solving the constraints, which now have
spin corrections in its source terms, (3.39, 3.40).
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As we have seen in section 2.3 and also in the last section, after all constraints as
well as supplementary and gauge conditions have been eliminated, the Hamiltonian
is given by the ADM energy depending on the fully reduced canonical variables.
However, while it is not problematic to calculate the ADM energy at least to some
order in a perturbative way, it will then depend on the variables appearing in the
stress-energy tensor (2.30) and equation of motion (2.28), for which the canonical
structure is not known. If one could someway find the transformation between these
variables and fully reduced canonical variables with usual Poisson brackets, then
the ADM energy can be expressed in terms of canonical variables and turns into the
ADM Hamiltonian. In this chapter we try to construct this variable transformation
order-by-order in some perturbation scheme by looking at certain consistency con-
ditions. It is expected that if one proceeds to higher and higher orders, then one
also needs to devise more and more consistency conditions. However, in the post-
Newtonian approximation one may reach an order high enough for all currently
relevant applications by just relying on a specific form of total linear and angular
momentum expressed in terms of canonical variables [14, 15]. Notice that this ap-
proach is not as powerful as the action approach [13] discussed in the last chapter,
however, it succeeded earlier and is still valuable at higher orders in spin as well as
for a check of the action approach at linear order in spin.

4.1. Symmetries and Conserved Quantities

Now the symmetries and corresponding conserved quantities for asymptotically flat
spacetimes are reviewed. These conserved quantities generate their symmetries on
phase space. For total linear and angular momentum this leads to a very specific
form when expressed in terms of canonical variables.

4.1.1. Global Rotations and Translations

It is intuitively clear that an asymptotically flat spacetime can be transformed into
a physically equivalent one by a 3-dimensional rotation and/or translation of each
3-dimensional hypersurface, i.e., of the whole spacetime. This means that asymp-
totically flat spacetimes posses a global symmetry1 under rotations and translations,

1 A global symmetry depends on parameters which may not vary over spacetime.
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4.1. Symmetries and Conserved Quantities

i.e., under the 3-dimensional Euclidean group. In fact, one even has a global sym-
metry under the Poincaré group, which will be discussed in section 4.1.3. How the
symmetry under the Euclidean group is represented on the coordinates crucially de-
pends on the chosen coordinate system even in flat space. If the coordinate system
resembles to a Cartesian one in the asymptotics, then a good guess for the symmetry
transformation is xi → Λij(x

j +aj), with xi the coordinates of the 3-dimensional hy-
persurfaces, ai a constant vector describing a translation, and a rotation matrix Λij.
The rotation matrix is parametrized by a constant antisymmetric matrix ωij = −ωji
in the form Λ = eω. A field, e.g., the induced metric γij, then transforms as

γij(x)→ ΛikΛjlγkl(Λ
−1x− a) , (4.1)

where the vector a has components ai. However, for this transformation to be a
global symmetry and not just a particular gauge transformation, the gauge condi-
tions must be invariant under this representation of the Euclidean group. This is
indeed fulfilled for the ADM gauge conditions (2.49) or (3.59) (remember that ai

and Λij are constant). Further, the local basis shall rotate the same way as the
coordinate basis, i.e., e(i)j(x) → ΛikΛjle(k)l(Λ

−1x − a). We assume here that the
tetrad was reduced to a triad with the help of the time gauge (3.34), as in the action
approach. The triad gauge shall be compatible with this transformation property,
which is the case for (3.53).

Looking at infinitesimal transformations, i.e., ai and ωij shall be small, it holds

xi → xi + ai + ωijxj , (4.2)

or for a tensor field (4.1)

γij → γij − ak∂kγij − ωklxl∂kγij + ωikγkj + ωjkγik . (4.3)

This is just the Lie-shift given by the infinitesimal coordinate transformation (4.2),
i.e., γij → γij − Lδxkγij. Similarly, the canonical variables transform as

ẑia → ẑia + ai + ωij ẑja , p̂ai → p̂ai + ωij p̂aj , (4.4)

Λ̂[i](j)
a → Λ̂[i](j)

a + ωjkΛ̂[i](k)
a , Ŝa(i)(j) → Ŝa(i)(j) + ωimŜa(m)(j) + ωjmŜa(i)(m) , (4.5)

hTT
ij → hTT

ij − ak∂khTT
ij − ωklxl∂khTT

ij + ωikhTT
kj + ωjkhTT

ik , (4.6)

π̂ijTT → π̂ijTT − ak∂kπ̂ijTT − ωklxl∂kπ̂ijTT + ωikπ̂kjTT + ωjkπ̂ikTT . (4.7)

A label index was attached to the matter variables now. In (4.5) the transformation
property of the local basis was used. Notice that the body-fixed basis in (4.5) stays
unchanged. For (4.6) and (4.7) the transverse-traceless projection was commuted
with the infinitesimal coordinate change.
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4. Symmetry Generator Approach

4.1.2. Symmetry Generators

Now we try to construct the generators of infinitesimal rotations and translations,
Pi and Jji. These are of course nothing else than 3-dimensional total linear and
angular momentum. With the help of these generators the transformation rule for
an arbitrary phase space function A must read

A→ A+ 1
2
ωij{A, Jji}+ ai{A,Pi} . (4.8)

It is sufficient to guarantee this transformation rule for all canonical variables. Com-
paring (4.8) with (4.4–4.7), using the standard Poisson brackets (3.48, 3.49) for each
object as well as (3.62), one can indeed construct Pi and Jij. It is immediately clear
that Pi and Jij are a sum of matter and field parts,

Pi = Pmatter
i + P field

i , Jij = Jmatter
ij + Jfield

ij . (4.9)

In order to get Pi, one sets ωij = 0 and ai is taken to be arbitrary. Then among
the matter variables only ẑia is transformed. Comparing (4.8) with (4.4) one obtains

δij = {ẑia, Pj} =
∂Pj
∂p̂ai

for each particle, and thus

Pmatter
i =

∑
a

p̂ai . (4.10)

Similarly, for the field part one gets −∂khTT
ij = {hTT

ij , Pk} as well as −∂kπ̂ijTT =
{π̂ijTT, Pk}, which leads to

P field
i = − 1

16π

∫
d3x π̂klTThTT

kl,i . (4.11)

The derivation of Jij is analogous, with the result

Jmatter
ij =

∑
a

(ẑiap̂aj − ẑjap̂ai) +
∑
a

Ŝa(i)(j) , (4.12)

Jfield
ij = − 1

16π

∫
d3x (xiπ̂klTThTT

kl,j − xjπ̂klTThTT
kl,i)

− 1

16π

∫
d3x 2(π̂ikTThTT

kj − π̂jkTThTT
ki ) .

(4.13)

The ADM Hamiltonian HADM is by construction manifestly invariant under global
rotations and translations (at least in the considered gauges). Comparing HADM →
HADM with (4.8) one sees that total linear and angular momentum have vanishing
Poisson brackets with the ADM Hamiltonian and are thus conserved.

Yet another symmetry specific to objects with spin is given by constant rotations
of the body-fixed frame,

Λ̂[i](j)
a → Λ̂[i](j)

a + ω[i][k]
a Λ̂[k](j)

a , (4.14)
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parametrized by a constant antisymmetric matrix ω
[i][j]
a = −ω[j][i]

a for each object.
The corresponding generators read Jbody

a[i][j] = Λ̂
[i](k)
a Λ̂

[j](l)
a Ŝa(k)(l) and are also conserved

quantities, Jbody
a[i][j] = const. A corollary of this is that

Jbody
a[i][j]J

body
a[i][j] = Ŝa(i)(j)Ŝa(i)(j) = const . (4.15)

As the ADM Hamiltonian HADM is invariant under the transformations (4.4–
4.7) and (4.14), these transformations are also a symmetry of the action (3.63).
The corresponding conserved quantities Pi, Jij, and Jbody

a[i][j] can then be obtained by

standard Noether arguments [90] and come out identical to above results.

4.1.3. Global Poincaré Invariance

The global symmetry under the Euclidean group discussed in the last section is only
a part of the bigger global symmetry under the Poincaré group. Besides total linear
and angular momentum, also the boost vector J i0 and the energy E = HADM of the
system generate a symmetry of the action and are conserved quantities for asymp-
totically flat spacetimes. However, the infinitesimal transformations generated by
HADM and J i0, similar to (4.8), are in general highly nonlinear in the considered
gauges and may not be written down immediately, as opposed to (4.4–4.7). Fur-
ther, J i0 explicitly depends on time, see (2.12). HADM and J i0 can be calculated by
surface integrals at spatial infinity, see, e.g., [54, 91]. For the total energy E = HADM

this was already found in (2.45) and the boost vector J i0 is given by (2.12) with

Gi =
1

16π

∮
d2sk

[
xi(γkl,l − γll,k)− γik + δikγll

]
. (4.16)

Similarly, for 3-dimensional total linear and angular momentum it holds

Pi = − 1

8π

∮
d2skπ

ik , Jij = − 1

8π

∮
d2sk(x

iπjk − xjπik) . (4.17)

When these quantities are expressed in terms of canonical variables (after gauge
fixing), they fulfill the Poincaré algebra (2.10, 2.11). Notice that all Poisson brackets
in (2.10, 2.11) involving Pi and Jij just reflect the transformation property (4.8).
Similar to the special relativistic case in section 2.1, one can define different total
spins and centers for a gravitating system in asymptotically flat spacetimes. In
particular, a center and total spin of the system with standard Poisson brackets can
be constructed (this was exploited recently in [92]).

4.1.4. Symmetry Generators from Integral Formulas

For simplicity we assume that γij does not need a redefinition in order to receive a
canonical meaning. However, this might be necessary at higher orders in spin. For
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the canonical field momentum π̂ij we allow spin corrections by the ansatz

π̂ij = πij + 16π
∑
a

πija δ̂a , (4.18)

where πija contains the yet undetermined spin corrections. The gauge condition
π̂ii = 0 with the subsequent decomposition (3.60) is assumed to hold. The surface
integrals from the last section can be transformed into volume integrals using the
Gauss theorem. With the decomposition (2.50) it follows

E = − 1

16π

∫
d3x∆φ , Gi = − 1

16π

∫
d3x xi∆φ . (4.19)

However, it is not possible to express E and Gi in terms of the canonical variables
without solving the nonlinear constraint equations for φ. Similarly one gets

Pi = − 1

8π

∫
d3x π̂ik,k , Jij = − 1

8π

∫
d3x (xiπ̂jk,k − xjπ̂ik,k) . (4.20)

Here one can exploit the momentum constraint Hi ≡ Hfield
i +Hmatter

i = 0 to further
evaluate Pi and Jij without needing to actually solve the constraints. Using (2.44,
2.50, 3.60) the momentum constraint can exactly be written as

π̂ik,k = −8π(Hmatter
i +Hπmatter

i ) +
1

2
π̂jkTThTT

jk,i − (π̂jkTThTT
ki ),j −∆

(
V̂ khTT

ki

)
+ B̂ij

,j ,

(4.21)
with the definitions

Hπmatter
i =

∑
a

[
πjka γjk,iδ̂a − 2(γikπ

kj
a δ̂a),j

]
, (4.22)

B̂ij =
[
1−

(
1 + 1

8
φ
)4
]

(ˆ̃πij + π̂ijTT) + V̂ k(hTT
ki,j + hTT

kj,i − hTT
ij,k)−

1

3
V̂ k

,kh
TT
ij , (4.23)

and the alternative vector potential

V̂ i =

(
δij −

1

4
∂i∂j∆

−1

)
ˆ̃πj , (4.24)

for which it holds
ˆ̃πij = V̂ i

,j + V̂ j
,i −

2

3
δijV̂

k
,k . (4.25)

One can calculate Hmatter
i using (3.41). Notice that B̂ij = B̂ji and B̂ii = 0. Further

the last two terms in (4.21) do not contribute to (4.20). Obviously, (4.20) are a sum
of matter and field parts, (4.9). The field parts are identical to (4.11) and (4.13).
However, the matter parts now read

Pmatter
i =

∫
d3x (Hmatter

i +Hπmatter
i ) , (4.26)
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Jmatter
ij =

∫
d3x (xiHmatter

j + xiHπmatter
j − xjHmatter

i − xjHπmatter
i ) . (4.27)

For consistency, these must turn into (4.10) and (4.12) when expressed in terms of
canonical variables.

4.2. Construction of Canonical Variables

In this section we will formulate the important consistency conditions and apply
them order-by-order in the post-Newtonian approximation to find canonical vari-
ables.

4.2.1. Consistency Conditions

In section 2.2.3 it was seen that the spin length Sa given by 2S2
a = SaµνS

µν
a is a

conserved quantity in the covariant spin supplementary condition. This can also
be derived from the action (3.30) using the symmetry under constant 4-dimensional
Lorentz transformations of the body-fixed frame, see also [69]. This conserved quan-
tity must be identical to the one in (4.15), as both were derived from the same
symmetry (though only the 3-dimensional rotation part is relevant after the supple-
mentary conditions were eliminated). Thus it must hold

SaµνS
µν
a = Ŝa(i)(j)Ŝa(i)(j) , (4.28)

providing a relation between covariant spin Saµν and canonical spin Ŝa(i)(j). This is
one important consistency condition we will impose.

Further, one can calculate Hmatter
i and thus (4.26, 4.27) in terms of (noncanonical)

variables in the covariant supplementary condition with the help of (3.41) and (2.30),

Hmatter
i =

∑
a

[
(pai +KijnS

j
a)δa +

(
1

2
γjkSaikδa + γjk

pa(inSak)

npa
δa

)
;j

]
, (4.29)

see (3.40). Then (4.26, 4.27) must coincide with (4.10, 4.12), leading to conditions
on the transformation between canonical variables and variables in the covariant
supplementary condition. We write this as a condition on Hmatter

i in the form

Hmatter
i =

∑
a

[
(p̂ai − πjka γjk,i)δ̂a +

1

2
(sija δ̂a),j

]
, (4.30)

where the symmetric part of sija is not constrained, but it has to hold

s[ij]
a = Ŝa(i)(j) + 2πjka h

TT
ki − 2πika h

TT
kj . (4.31)
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4. Symmetry Generator Approach

This condition on Hmatter
i is the most general one2 that guarantees that (4.26, 4.27)

coincide with (4.10, 4.12).
Above conditions are sufficient for the post-Newtonian order considered here. An-

other condition that could be useful at even higher orders (in particular also higher
orders in spin) would be the fulfillment of the Poincaré algebra. However, all Pois-
son brackets in (2.10, 2.11) involving Pi and Jij are fulfilled by construction due
to the transformation property (4.8) if above conditions hold, thus giving nothing
new. In [14] it was considered whether the construction of the constraint algebra
(2.72–2.74), which is related to diffeomorphism invariance and thus more fundamen-
tal than global Poincaré invariance, could be used to construct canonical variables.
However, this approach seems to be unmanageable.

4.2.2. Canonical Variables

First we evaluate the condition on the spin length given by (4.28). We will first
construct a specific transformation between Saij and Ŝa(i)(j) and then discuss its
uniqueness. Inspired by the flat space case (2.20), we first apply the transformation

Saij = Ŝaij −
painSaj
ma − npa

+
pajnSai
ma − npa

, nSai = −pakγ
kjŜaji
ma

, (4.32)

to the conserved quantity SaµνS
µν
a = γkiγljSaklSaij − 2γijnSainSaj, with the result

SaµνS
µν
a = γkiγljŜaklŜaij. With the help of an arbitrary triad e(i)j this can be

written in a local basis as SaµνS
µν
a = Ŝa(i)(j)Ŝa(i)(j), so we have found a possible

transformation allowed by (4.28). The ambiguities that are left can best be discussed
in terms of the spin vector Ŝa(i). As we are still considering the linear order in

spin, any further transformation of Ŝa(i) must be linear in spin and must leave the

expression Ŝa(i)Ŝa(i) invariant (notice Ŝa(i)(j)Ŝa(i)(j) = 2Ŝa(i)Ŝa(i)). Therefore only
a rotation of the spin vector as a further transformation is possible, which can be
absorbed into the yet arbitrary triad e(i)j.

A comparison of (4.29) with (4.30) leads to

p̂ai = pai +KijnS
j
a + πjka γjk,i −

(
1

2
Sakj +

pa(knSaj)
npa

)
Γkji , (4.33)

without any ambiguity. Now (4.29) is of the form (4.30), so (4.31) is the only
condition that is left. In order to evaluate (4.31) we first need to read off sija . For
the redefinition of the position variable we use

zia = ẑia −
nSia

ma − npa
+ zi∆a , (4.34)

2In the pole-dipole approximation at most one partial derivative can appear in Hmatter
i . Further

it was assumed that the variables from different objects do not mix (e.g., as p̂1δ̂2) at this stage.
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where zi∆a is a yet unknown correction to the flat space case (2.20). Comparing
(4.29) expressed in terms of the new variables with (4.30) leads to

sija = γjkŜaik + γjkγlp
2p̂alp̂a(iŜak)p

np̂a(ma − np̂a)
− 2p̂aiz

j
∆a , (4.35)

with the definition np̂a = −
√
m2
a + γij p̂aip̂aj. The only ambiguities in the transition

to canonical variables are now given by πija , zi∆a, and the triad e(i)j. We try to
fix these ambiguities by considering (4.31) with (4.35) order-by-order in the post-
Newtonian approximation, which is introduced in the next section.

From the action approach we know that the ambiguity of e(i)j should just be a
gauge freedom. Thus different choices for e(i)j should be canonically equivalent. In-
deed, it was shown in [84] that a spin rotation is just a canonical transformation at
linear order in spin. However, a canonical transformation may change all variables,
but p̂ai as well as hTT

ij can not be changed any more. Thus the canonical represen-
tation was already partly fixed and we must therefore still keep e(i)j as general as
allowed by the restriction on the triad gauge made in section 4.1.1.

4.2.3. Post-Newtonian Approximation

The idea behind the post-Newtonian approximation is that for slowly moving bodies
and weak gravitational forces the Newtonian physics is recovered as a first approx-
imation. For two objects this means that their relative velocity v shall be small
compared to the speed of light c. In Newtonian physics the time average of kinetic
and potential energy is of the same order if the virial theorem applies, which is the
case for bound systems. Then one has

v2

c2
∼ GM

c2r
� 1 , (4.36)

where M is the total mass of the system and r the typical distance of the objects.
An expansion in the dimensionless quantities (4.36) obviously is also an expansion
in c−2. We will therefore think of the post-Newtonian expansion as an expansion in
c−2. However, this is a rather formal point of view as it depends on the choice of
units whether c−2 is actually a small number (e.g., in our units it is equal to one).
As seen later, there may be half post-Newtonian orders corresponding to c−1.

As post-Newtonian orders are formally counted in terms of the velocity of light c
originally present in the equations, i.e., before setting c = 1 = G, one should intro-
duce G and c back into all expressions. However, this would undo the advantages
achieved by setting c = 1 = G. Instead, we will assign an order in powers of c−1

directly to our variables. When setting c = 1 = G only one unit is needed, which
we choose to be the unit of spatial distances, e.g., meters. Then the values of all
masses ma must be given in meters, which is obtained by multiplying their values in
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4. Symmetry Generator Approach

kilograms by G/c2. Therefore we just count the masses to be of the order c−2, as this
is the power of the speed of light that would be introduced into the expressions if
we restore the original units. Similar arguments apply to the other matter variables
and we have the counting rules

ẑa = O
(
c0
)
, ma = O

(
c−2
)
, p̂a = O

(
c−3
)
. (4.37)

Notice that an energy receives a counting of c−4, which gives the absolute order of
the Newtonian Hamiltonian (being an energy) within these counting rules. However,
one obtains different counting rules for the matter variables if one uses kilograms
instead of meters to replace all units when setting c = 1 = G. This convention is
also often used and leads to different absolute orders in c−1, e.g., a mass now receives
a counting of c0 and the Newtonian Hamiltonian is at the absolute order c−2. But
relative orders are always the same, so only a counting relative to the Newtonian
order (or to the leading order if the Newtonian order vanishes) finally makes sense
when using such counting rules. The correct absolute Newtonian order is c0, as it
must prevail when c−1 → 0.

The formal counting may nicely be applied to more complicated situations, e.g.,
when spins are present. For dimensional reasons only we are thus counting the
spins of the order c−3. This has some computational advantages, e.g., similarities to
calculations for nonspinning objects are more manifest, see section 6.2.2. Here post-
Newtonian orders should always be understood in the formal sense if not otherwise
stated. However, the spin of a (Kerr) black hole is given by Gm2a/c, where m is
the mass of the black hole and a = 0 . . . 1 is the dimensionless Kerr parameter. The
maximal spin of an object is defined as Gm2/c (which is the maximal spin of a black
hole, a = 1), and additionally has to be counted as c−1. If the spins are maximal,
one therefore has to add half a post-Newtonian order relative to the formal counting
for each spin variable appearing in a specific expression.

If the spins are not maximal, one has to be careful when classifying spin effects
into post-Newtonian orders. For example, if the spin is 1

100
of the maximal one and

the orbital velocity is 1
100

of the speed of light, then each spin variable corresponds
to one extra order in v/c relative to the maximal spin case, or half a post-Newtonian
order. At a later time during the inspiral the spin length has not changed much3,
however, the orbital velocity might have increased, e.g., to 1

10
of the speed of light.

Then each spin variable even corresponds to two additional orders in the velocity or
one post-Newtonian order relative to the maximal spin case. To conclude, while the
spin length does essentially stay constant during the inspiral, the orbital velocity
will increase and one expects that spin effects slightly shift to higher post-Newtonian
orders during inspiral. Therefore, assigning a post-Newtonian order to spin contri-
butions in the Hamiltonian seems to make no sense in general, except for maximal
spins or within the formal counting. However, this discussion is only superficial, the

3In the approximation considered here the spin length is even exactly constant.
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relevance of spin effects also crucially depends on the orientation of the spins and
the mass ratio of the objects. Due to these problems we will prefer to classify spin
effects by leading order, next-to-leading order, etc. when possible.

Counting rules for other quantities may be derived from (4.37). For example, φ
results from solving the constraints, and one may easily see that its leading order
must be identical to the leading order of the matter source of the Hamilton constraint
Hmatter, which is c−2 (this will become obvious in section 6.1.2). Similarly one gets
counting rules for the other field variables by considering the matter source of the
field equations. Without going into detail, we state here that

φ = O
(
c−2
)
, hTT

ij = O
(
c−4
)
, π̃ij = O

(
c−3
)
, πijTT = O

(
c−5
)
,

(4.38)
are the correct counting rules for the fields. In general the fields include different
post-Newtonian orders, (4.38) only gives the leading orders. The Taylor expansion
of the fields in terms of c−1 is written as, e.g.,

φ = φ(2) + φ(4) + φ(6) +O (c−7) , (4.39)

where a number in round brackets denotes the absolute order in c−1 within the
counting given by (4.37) (this should not be confused with indices in the local
basis). The vanishing of the odd orders φ(3) and φ(5) is explained by the vanishing
of the corresponding orders in the source terms.

4.2.4. Final Fixation of the Canonical Variables

First we try to find a way to parametrize the ambiguity in the triad when the induced
metric is kept fixed. If one considers the perturbative expansion of ei(k)ej(k) = γij

under the assumption that the leading order is given by e
i(k)
(0) = δik, then one sees that

the symmetric part of ei(k) is uniquely fixed at each order, while the antisymmetric
part êij ≡ 1

2
(ei(j) − ej(i)) is arbitrary. Therefore êij parametrizes the rotational

degrees of freedom left in the definition of the local basis and thus the ambiguity of
the canonical spin variable. In particular, the leading post-Newtonian orders read

e
i(j)
(2) = êij(2)−

1

4
δijφ(2) , e

i(j)
(4) = êij(4)−

1

2
êik(2)ê

jk
(2)−

1

4
δijφ(4) +

3

64
δijφ

2
(2)−

1

2
hTT
ij . (4.40)

Notice that êij is needed only on the worldlines. In the following we use the abbre-
viation êija ≡ êij(ẑka).

Next we make an ansatz for πija , zi∆a, and êija at each post-Newtonian order. For
this purpose it is important that πija has the dimension length squared, zi∆a the
dimension length, and êija is dimensionless. Further, πija and zi∆a must be linear
in spin, while êija must be independent of the spins. The fields hTT

ij and π̂ijTT are
always taken at the position ẑia in such an ansatz and ẑia should not appear directly.

49



4. Symmetry Generator Approach

Of course one also has to take into account that πija must be symmetric and êija
antisymmetric. Considering possible ansätze under these restrictions we infer that
the leading orders are at least πija = O (c−5), zi∆a = O (c−2), and êija = O (c−6).

From (4.35) the first orders of s
[ij]
a then follow as

s
[ij]
a(3) = Ŝa(i)(j) , s

[ij]
a(5) = p̂ajz

i
∆a(2)− p̂aiz

j
∆a(2) , s

[ij]
a(7) = p̂ajz

i
∆a(4)− p̂aiz

j
∆a(4) . (4.41)

Evaluating (4.31) one concludes that zi∆a(2) = 0 and zi∆a(4) = 0. Thus we have

anticipated the correct redefinition of the position (4.34) to this order.

For s
[ij]
a(9) one has

s
[ij]
a(9) = êika(6)Ŝa(k)(j)− p̂aizj∆a(6) +

1

4m2
a

p̂akh
TT
lj (p̂aiŜa(l)(k) + p̂alŜa(i)(k))−(i↔ j) , (4.42)

where (i↔ j) denotes an exchange of the indices i and j. The most general solution
of (4.31) under above restrictions is

πija(5) =
1− C
8m2

a

(p̂aip̂akŜa(k)(j) + p̂aj p̂akŜa(k)(i)) , (4.43)

êija(6) =
C

4m2
a

p̂ak(p̂aih
TT
jk − p̂ajhTT

ik ) , zi∆a(6) =
C

4m2
a

p̂aj(Ŝa(k)(i)h
TT
jk + Ŝa(k)(j)h

TT
ik ) ,

(4.44)

at this order and now depends on an arbitrary constant C.
However, we can remove the ambiguity C by a canonical transformation with an

infinitesimal generator

g =
C

4m2
a

p̂aip̂akŜa(k)(j)

∫
d3xhTT

ij δ̂a . (4.45)

An arbitrary phase space function A then transforms as A → A + {A, g} to the
required order. Applied to the canonical variables one obtains

hTT
ij → hTT

ij , π̂ijTT → π̂ijTT − δTTij
kl

∑
a

4πC

m2
a

p̂akp̂amŜa(m)(l)δ̂a , (4.46)

Ŝa(i)(j) → Ŝa(i)(j) − êika(6)Ŝa(k)(j) − êjka(6)Ŝa(i)(k) , (4.47)

ẑia → ẑia − zi∆a(6) , p̂ai → p̂ai −
C

4m2
a

p̂alp̂ajŜa(j)(k)h
TT
kl,i . (4.48)

This indeed removes all terms depending on C from the source expressions Hmatter

and Hmatter
i at the considered order. We can therefore choose C = 0, which leads

to agreement with the action approach. The triad then is in the spatial symmetric
gauge êij = 0 and all variable transformations are the same as in the action approach
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at the considered post-Newtonian order. In particular, using (3.55) and (3.58) in
(3.45) leads to (4.33). Further, in the action approach we found that zi∆a = 0 and

πija =
1

2
Â(ij)
a +Bij

klÂ
[kl]
a , (4.49)

or more explicitly using (3.44)

πija = γikγjl
map̂a(knSal)

2np̂a(ma − np̂a)
+

1

2
Bij
klγ

kmγlnŜamn . (4.50)

Using Bij
kl = O (c−4), cf. Eq. (3.37) in [15], the post-Newtonian expansion of (4.50)

agrees with the findings in this section. The check of the action approach given here
is valid to the formal 3.5 post-Newtonian order.
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Higher orders in spin require higher multipole moments, e.g., a black hole has a
nonzero quadrupole at the quadratic level in spin [37]. We will constrain to quadru-
pole and quadratic order in spin in this chapter. Besides spin-induced quadrupole
deformations discussed here, also tidal deformations induced through the gravita-
tional field of other objects have been treated in the literature, see, e.g., [93, 94].

5.1. Quadrupole Approximation

The extension of the pole-dipole approximation to higher multipoles was already
essentially completed some time ago [41, 95–97], see also [98, 99], most notably
by Dixon. It should be stressed that Dixon’s method incorporates Mathisson’s
pioneering ideas [100].

5.1.1. Quadrupole Approximation from Tulczyjew’s Method

A more direct application of Mathisson’s ideas to the quadrupole order was given
in [16] with the help of W. M. Tulczyjew’s method [31], see also [101]. There the
quadrupole moment tµναβ was kept in (2.26) when evaluating (2.27). In addition to
pµ and Sµν now various quadrupole moments appear. It is suitable to introduce a
reduced quadrupole moment Jµναβ with symmetries

Jνρβα = J [νρ][βα] = Jβανρ , Jν[ρβα] = 0 ⇔ Jνρβα + Jνβαρ + Jναρβ = 0 . (5.1)

Thus Jρβαν has the same (algebraic) symmetries as the Riemann tensor. This quad-
rupole moment is able to incorporate all quadrupole contributions from tµναβ that
remain after (2.27) was evaluated. The equations of motion then take on the simple
form

DSµν

dτ
= 2p[µuν] +

4

3
R

(4)
αβρ

[µJν]ρβα ,
Dpµ
dτ

= −1

2
R

(4)
µρβαu

ρSβα− 1

6
R

(4)
νρβα||µJ

νρβα , (5.2)

and agree with Dixon [97]. The reduced moment Jµναβ is also optimal to give a
simplified expression for the stress-energy tensor, reading

√
−gT µν =

∫
dτ

[
u(µpν)δ(4)+

1

3
R

(4)
αβρ

(µJν)ρβαδ(4)+
(
u(µSν)αδ(4)

)
||α−

2

3

(
Jµαβνδ(4)

)
||(αβ)

]
.

(5.3)
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5.1. Quadrupole Approximation

In this form the stress-energy tensor was first given in [16]. This stress-energy tensor,
together with the ansatz for Jµναβ at the quadratic level in spin given below, can
be applied to the derivation of the next-to-leading order radiation field, see [102] for
the spin-orbit case (the leading order is given in [103]). Besides this formula for the
stress-energy tensor, a further interesting result in [16] is the relation between the
tµν... moments and Dixon’s reduced moments pµ, Sµν , and Jµναβ. This relation could
be used to study alternatives to Dixon’s integral formulas for the multipole moments
or to discuss the relation between moments belonging to different representative
worldlines (for the latter see section VII.C in [16]).

The spin supplementary condition Sµνfν = 0 is preserved in time if

pµ =
1

−fαuα

(
−fνpνuµ + Sµν

Dfν
dτ

+
4

3
fνR

(4)
αβρ

[µJν]ρβα

)
, (5.4)

which should give a relation between pµ and uµ. This extends (2.31) to the quadru-
pole approximation. The extension of (2.35) reads

pµ = −uνpνuµ −
D(Sµν)

dτ
uν +

4

3
uνR

(4)
αβρ

[µJν]ρβα . (5.5)

5.1.2. Decomposition of the Quadrupole

In order to parametrize the quadrupole deformation due to spin we try to find the
most general covariant ansatz for Jµναβ quadratic in the spin tensor that is relevant
for the post-Newtonian order in question. It is suitable to consider the orthogonal
decomposition of Jµναβ with respect to the vector fµ to which the spin is orthogonal,
Sµνfν = 0. This decomposition reads

Jνρβα = Qνρβα − 1√
−fνf ν

(f [νQρ]βα + f [αQβ]ρν)− 3

−fνf ν
f [νQρ][βfα] , (5.6)

where Qνρβα, Qρβα, and Qρβ are called stress, flow, and mass quadrupole here and
are orthogonal to fµ in each index, see also [104]. They further have the symmetries

Qνρβα = Q[νρ][βα] = Qβανρ , Qν[ρβα] = 0 ⇔ Qνρβα +Qνβαρ +Qναρβ = 0 ,
(5.7)

Qρβα = Qρ[βα] , Q[ρβα] = 0 ⇔ Qρβα +Qβαρ +Qαρβ = 0 , Qρβ = Q(ρβ) .
(5.8)

In a local basis with fµ giving the time direction these moments only have spatial
components (due to the orthogonality of these moments to fµ). One may therefore
decompose these moments further in the local basis into parts transforming under
irreducible representations of the 3-dimensional rotation group SO(3). For the mass
quadrupole this SO(3)-decomposition reads, written in the coordinate frame,

Qµν = QSTF
µν +

1

3
PµνQ

ρ
ρ , (5.9)
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with the orthogonal projector P µν = gµν− 1
fρfρ

fµf ν (notice P µνgµν = 3). Here QSTF
µν

is symmetric and trace-free (STF) in the local frame. In the coordinate frame the
trace-free property reads QSTF

µν gµν = 0 and of course it holds QSTF
µν f ν = 0. Obviously

Qµν has six independent components, five contained in the symmetric trace-free part
and one in the scalar part Qρ

ρ. The same holds for Qµναβ with a more complicated
decomposition into symmetric trace-free and scalar parts, whereas Qµνα has even
eight independent components corresponding to a symmetric trace-free and a vector
part [104].

5.1.3. Ansatz for the Mass Quadrupole

We will now constrain to fµ = pµ and to the Newtonian limit, the latter to iden-
tify the dominant contributions. Then only the mass multipoles are important for
the dynamics. Though flow and stress multipoles do in general not vanish in the
Newtonian limit [96], they give no contribution to the gravitational field and can be
neglected. Therefore the decomposition of the quadrupole moment (5.6) just reads

Jνρβα = − 3

m2
p

p[νQρ][βpα] , (5.10)

where the dynamical mass defined by pµp
µ = −m2

p is now denoted as mp. Also the
trace part of the mass quadrupole gives no contribution to the gravitational field
outside the body and one can thus assume Qρ

ρ = 0. The mass quadrupole induced
by spin is then given by the ansatz

Qµν = QSTF
µν =

CQ
mp

(
SµρSν

ρ − 1

3
PµνS

ρσSρσ

)
, (5.11)

and is parametrized only by CQ in the Newtonian limit and quadratic level in spin,
see also [105]. For black holes one has CQ = 1 [37] while for neutron star models CQ
depends on the equation of state [106].

Though the ansatz for the quadrupole (5.10, 5.11) was given in the Newtonian
limit only, it was written in a manifestly covariant way and we will now consider its
implications in full general relativity. However, we stay at the quadratic level in spin.
It will be shown in the next section by relying on investigations in [107] that this
ansatz indeed holds to next-to-leading order in the post-Newtonian approximation.
It is easy to see from (5.2) that the spin length S given by 2S2 = SµνSµν is conserved
for our quadrupole ansatz and spin supplementary condition Sµνpµ = 0. But the
mass mp is not conserved. However, the new mass-like parameter m defined by

m = mp −
1

6
R

(4)
νρβαJ

νρβα , (5.12)

is conserved for our ansatz quadratic in spin. Finally (5.4) can be written as

pµ = muµ − 1

2m
R

(4)
ρναβS

µρSαβuν +
1

2
R

(4)
δαβνQ

αβuν(2gδµ + uδuµ) , (5.13)
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and gives a relation between pµ and uµ.

5.2. Action Approach

It is shown in this section that allowing nonminimal couplings in the action approach
from section 3.1.3 corresponds to certain higher multipole corrections, see also [87].
The couplings in the action needed for spin-induced quadrupole deformations at
next-to-leading order in the post-Newtonian approximation can be found in [107].

5.2.1. Nonminimal Couplings

We now generalize the ansatz (3.16) for the action to nonminimal couplings. More
precisely, the Lagrangian is allowed to contain the Riemann curvature tensor,

WM [eIµ, z
µ,ΛAI ] =

∫
dτ LM(uµ,Ωµν , gµν(zρ), gµν(z

ρ), R
(4)
µναβ(zρ)) . (5.14)

The Euler-Lagrange equations of this action follow as in section 3.1.3 in a straight-
forward way. It is easy to see that (3.19) stays unchanged,

D

dτ

[
∂LM
∂Ωµν

]
=
∂LM
∂Ωµρ

Ωρ
ν −

∂LM
∂Ωνρ

Ωρ
µ . (5.15)

However, the important relation (3.17) now reads

0 =
∂LM
∂uα

uβ + 2
∂LM
∂Ωαν

Ωβν + 2
∂LM
∂gαν

gβν − 2
∂LM
∂gβν

gαν − 4
∂LM

∂R
(4)
βνρδ

R
(4)
ανρδ . (5.16)

Using this identity and the definitions

pµ =
∂LM
∂uµ

, Sµν = 2
∂LM
∂Ωµν

, Jµναβ = −6
∂LM

∂R
(4)
µναβ

, (5.17)

the Euler-Lagrange equations for the matter variables turn into (5.2), whereas for
the field variables one obtains the Einstein equations with the stress-energy tensor
(5.3). Higher multipoles are covered by including symmetrized covariant derivatives
of the curvature tensor in the Lagrangian [87].

An action invariant under general coordinate transformations always leads to a
stress-energy tensor fulfilling (2.27). As well known, this can be shown from the
Noether identity [90] following from general covariance, see also Eq. (18.23) in [108].
However, this does not mean that an action approach as envisaged here always
leads to the most general equations of motion allowed by (2.27). Dixon’s derivation
essentially only evaluated (2.27) and thus covers a much more general situation,
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though the Euler-Lagrange equations obtained in this section are identical to the
equations of motion found by Dixon (but it is not a priori clear that this will be the
case). In particular, the multipole moments will always be implicitly fixed by the
other variables on which the Lagrangian was chosen to depend on, cf. (5.17). This
means that the quadrupole is not a dynamical variable within our action approach
and our action does not cover, e.g., quadrupole oscillation modes or tidal resonances,
see, e.g., [109]. Notice that (2.27) puts no constraints on equations of motion related
to dynamical quadrupole degrees of freedom. However, a dynamical quadrupole
requires further dynamical variables in the action principle. For a good effective
description of extended objects via an action one thus needs some intuition on the
relevant degrees of freedom that should enter into an ansatz for the effective action.
The action (5.14) includes translational and rotational degrees of freedom of the
object, which is expected to be a good choice for the inspiral phase.

An advantage of the action approach is that it is easier to find conserved quantities
or constant parameters. In particular, the conservation of the spin length immedi-
ately follows from the symmetry under Lorentz transformations of the body-fixed
frame. Further all parameters in the action, e.g., a mass-like parameter, are constant
simply by assumption. It is much more difficult to find such constant quantities if
one only considers Dixon’s results together with a specific ansatz for the quadrupole
moment, see, e.g., Eq. (5.12) or the discussion in reference [16].

It is important that one may eliminate the Ricci tensor (and scalar) from the mat-
ter Lagrangian LM by a suitable redefinition of the metric [110]. This was already
found in [111] within a slightly different situation and is based on the observation
that in a perturbative context the use of lower order equations of motion in the
perturbation part of the action corresponds to a redefinition of variables, see [112].
If we take some additions to the point-mass Lagrangian as a perturbation, then
we may eliminate the Ricci tensor by using the Einstein field equations with the
point-mass stress-energy tensor as a source, corresponding to an irrelevant redefini-
tion of the metric. However, the point-mass stress-energy tensor then gives rise to
singular self-interactions in the matter Lagrangian LM , which are formally neglected
[111]. The conclusion is that one may use the vacuum field equations R

(4)
µν = 0 in

the matter Lagrangian LM . (This will also be used in a slightly modified way in
section 5.2.3.) The matter Lagrangian can therefore be restricted to depend on the

completely trace-free Weyl tensor C
(4)
µναβ,

C
(4)
µανβ = R

(4)
µανβ + gα[νR

(4)
β]µ − gµ[νR

(4)
β]α +

1

3
gµ[νgβ]αR

(4) , (5.18)

instead of R
(4)
µναβ. This would give rise to corresponding modified multipole moments

defined analogous to (5.17). Further, the Weyl tensor can be split into electric E
(4)
µν

and magnetic B
(4)
µν parts,

E(4)
µν = C

(4)
µανβu

αuβ , B(4)
µν =

1

2
ε

(4)
µραβC

(4)
νσ

αβuρuσ , (5.19)
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with ε
(4)
µαβρ the 4-dimensional Levi-Civita symbol, leading to definitions for corre-

sponding electric and magnetic multipoles as partial derivatives of LM . It could be
interesting to consider the impact on the equations of motion and the stress-energy
tensor from letting LM depend on C

(4)
µναβ or E

(4)
µν and B

(4)
µν instead of R

(4)
µναβ. However,

this will not be necessary here.

5.2.2. Legendre Transforms and Supplementary Conditions

Up to now the Lagrangian LM is completely arbitrary and the equations of motion
fully agree with Dixon at the quadrupole level. The question is which supplementary
conditions (3.10) and (3.12) belong to LM , or how LM must be chosen to fit with
specific supplementary conditions. We only require here that (3.10) and (3.12) are
preserved in time, which leads to

DΛAI

dτ
fI + ΛAI

(
ηIJ −

fIfJ
fKfK

)
DfJ

dτ
= 0 , SµρΩ

ρνfν + Sµν
Dfν
dτ

= 0 , (5.20)

where (5.15) with (5.17) was used. Both conditions are fulfilled if we have

Ωµνfν + P µρDfρ
dτ

= 0 . (5.21)

In this sense the conditions (3.10) and (3.12) belong together (however, there may
be exceptions). This is the condition our action shall fulfill here. Notice that (5.4)
only guarantees that (3.12) is preserved in time so that the second relation in (5.20)
holds, but this does not imply (5.21). However, comparing (5.17) with (5.4) can
still be useful. Further, at the quadratic level in spin we need to fulfill (5.21) only
to linear order in spin.

It is suitable to define a new function RM(uµ, Sµν , g
µν , gµν , R

(4)
µναβ) via Legendre

transformation, RM = LM − 1
2
SµνΩ

µν . It holds

pµ =
∂RM

∂uµ
, Ωµν = −2

∂RM

∂Sµν
, Jµναβ = −6

∂RM

∂R
(4)
µναβ

. (5.22)

An ansatz for RM then has to fulfill the condition (5.21) with (5.22) inserted. This
gives a partial differential equation for RM . It holds RM = pµu

µ, which is a conse-
quence of the reparametrization invariance of the matter action. Notice that RM is
similar to the Routhian used in [107, 113, 114]. For the Routhian the Ricci rotation
part in the term 1

2
SµνΩ

µν , cf. Eq. (3.15), is not subtracted from the Lagrangian LM .
Therefore the Routhian is not a covariant function, whereas RM introduced here is
covariant.

Due to reparametrization invariance a full Legendre transformation in uµ and Ωµν

leads to a vanishing result. However, as in section 2.3.2 we define a function HMτ
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which contains the mass-shell constraint, suitably generalized to the quadratic-in-
spin level, together with a Lagrange multiplier λ. It holds

uµ =
∂HMτ

∂pµ
, Ωµν = 2

∂HMτ

∂Sµν
, Jµναβ = 6

∂HMτ

∂R
(4)
µναβ

. (5.23)

It is also possible to give an ansatz for the mass-shell constraint and thus for HMτ

directly. This ansatz must be chosen such that the condition (5.21) with (5.23)
inserted is fulfilled. Further, one may simplify the quadratic-in-spin corrections
to HMτ by using the leading order constraint pµpµ = −m2, corresponding to a
redefinition of the Lagrange multiplier [112].

5.2.3. Leading Order

The coupling terms found in [107] adapted to our notation and conventions read

RM =
1√
−uσuσ

(
muµu

µ − 1

2m
R

(4)
µναβS

ρµSαβuνuρ +
CES2

2m
E(4)
µν S

µ
ρS

ρν

)
. (5.24)

It was found in [107] that these coupling terms are the most general ones at quadratic
level in spin sufficient for the next-to-leading order in the post-Newtonian approxi-
mation. Besides these terms corresponding to quadrupole deformation due to spin,
one could also treat tidal deformations, see, e.g., [93], using nonminimal couplings
in the action given in [94, 115]. With the equivalence of Riemann and Weyl tensors
within the matter action, see section 5.2.1, we can write RM as

RM =
1√
−uσuσ

(
muµu

µ − 1

2m
R

(4)
µναβS

ρµSαβuνuρ −
1

2
R

(4)
αµβνQ

αβuµuν
)
, (5.25)

where Qµν is given by (5.11) and CES2 = CQ. If we set fµ = pµ and thus

Sµνpν = Sµν
∂RM

∂uν
= 0 , (5.26)

we obviously reproduce (5.10) and (5.13) within the gauge uσu
σ = −1 by plugging

(5.25) into (5.22). Further (5.21) is fulfilled1 to the considered order in spin by using
(5.2) and (5.22), i.e.,

0 = −2
∂RM

∂Sµν

∂RM

∂uν
− 1

2
P µσR

(4)
σρβαu

ρSβα + P µσR
(4)
νρβα||σ

∂RM

∂R
(4)
νρβα

. (5.27)

1One could also consider the most general ansatz for RM and ask for which choice of fµ the
condition (5.21) is fulfilled. This would allow one to study the impact of the supplementary
conditions on the dynamics.
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The last term is of higher order here as this condition must be fulfilled to linear
order in spin only. Notice that m depends on spin according to m = m0 + 1

4I
SαβS

αβ,
see also (3.28). (Otherwise the Legendre transformation between LM and RM would
not be possible.)

An equivalent description in terms of HMτ reads

HMτ = λ

(
m2 + pµp

µ +
1

m2
R

(4)
µναβS

ρµSαβpνpρ −
CQ
m2

R
(4)
αµβνS

α
ρS

ρβpµpν
)
, (5.28)

with the action still given by (3.30). The derivation of a canonical formalism now
follows along the same lines as in chapter 3. First the matter constraints are solved.
The only difference to the linear-in-spin case arises in the mass-shell constraint,
which follows from the variation of λ. The solution of this constraint reads

np ≡ nµpµ = −
√
m2 + γijpipj +

CQ

2m2
√
m2 + γijpipj

R
(4)
αµβνS

α
ρS

ρβpµpν . (5.29)

The last term was not yet split into time and space parts. This splitting leads to
quite many terms, so one should restrict to some post-Newtonian order. Though all
formulas are sufficient for the next-to-leading order, we will for simplicity only treat
the leading order in this section. Then we have

np = −
√
m2 + γijpipj −

CQ
2mN

γklγimγjnSikSjl(Kmn,0 +N;mn) . (5.30)

The only contribution to the action quadratic in spin then arises from the term Nnp
in the matter Lagrangian, see (2.68). Problematic is the partial time derivative of
the extrinsic curvature. In consideration of the definition 2NKij = −γij,0 + 2N(i;j)

we see that the Kmn,0-term produces time-derivatives of lapse and shift, as well as a
double time-derivative of γij. This does not fit well to the derivation of the canonical
formalism as given in chapter 3. In order to overcome these problems, we eliminate
Kmn,0 with the help of the vacuum field equations, cf. the discussion in section 5.2.1.
Finally one ends up with just a quadratic-in-spin correction Hmatter

S2 to the source of
the Hamilton constraint Hmatter of the form

Hmatter
S2 =

CQ
2m

γklRijSikSjlδ . (5.31)

This source term is quite unusual in the sense that it is not a specific projection of
the stress-energy tensor (5.3, 5.10, 5.11), i.e., Hmatter 6= √γTµνnµnν . This is due to
the implicit redefinition of variables performed by using the vacuum field equations
in the matter action. However, the leading order Hamiltonian resulting from this
source term is identical to the well-known one obtained in section 6.2.2. The variable
redefinitions from section 3.2.2 are still correct at the leading order. (There are no
additional terms that need to be cancelled in the action and all quadratic spin
contributions from the redefinitions in section 3.2.2 are of higher order.)
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At the next-to-leading order the calculation gets much more involved. In particu-
lar there are more time derivatives of the extrinsic curvature that must be eliminated
and the variable redefinitions from section 3.2.2 need corrections quadratic in spin.
It is also relevant whether the field variables in the variable transformations are
taken at the new or at the old particle position. Further corrections to the canonical
field momentum seem to be necessary, too. We will therefore study an alterna-
tive derivation oriented at the symmetry generator approach from chapter 4 in the
following.

5.3. Symmetry Generator Approach

We now sketch the derivation of the canonical formalism at quadratic level in spin
via the approach from chapter 4. However, essentially only the calculation of the
source terms of the constraints as certain projections of the stress-energy tensor
is used here, the determination of canonical variables by looking at the symmetry
generators will only be touched lightly.

5.3.1. Leading Order

First we calculate the source of the field constraints as certain projections of the
stress-energy tensor (5.3, 5.10, 5.11), e.g., Hmatter =

√
γTµνn

µnν . To leading order
we have

Hmatter
S2 =

∑
a

(
1

2
γkiγljQaijδa

)
;kl

, (5.32)

and no corrections appear in Hmatter
i . The variable redefinitions found at the linear

order in spin are therefore sufficient here, as they are followed from Hmatter
i in the

symmetry generator approach. For CQa = 1 this source term is in agreement with
the source of the Kerr metric in approximate ADM coordinates found in [116]. It
further gives the correct Hamiltonian, see section 6.2.2.

Obviously the derivation of the leading order in this section is much simpler
than the one via the action approach. But this does not need to be true at the
next-to-leading order. The problem is that it is not guaranteed that the variable
redefinitions can be uniquely fixed by just the conditions (4.30) and (4.31). The
action approach is much more systematic and should therefore be preferred at the
next-to-leading order. However, in the next section a shortcut to the next-to-leading
order Hamiltonian is described, which combines the approach of the present section
with the Poincaré algebra approach in [117].
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5.3.2. Next-to-Leading Order Static Source Terms

In [117] Hergt and Schäfer constructed the part of the next-to-leading order Hamilto-
nian that depends on p̂i (i.e., the nonstatic part) from an ansatz for this Hamiltonian
(together with a suitable ansatz for the source of the constraints). The coefficients
in this ansatz could be uniquely fixed up to a canonical transformation by consider-
ing the Poincaré algebra (2.10, 2.11). The degrees of freedom corresponding to the
ambiguity in the canonical representation are given by the coefficients that enter via
an ansatz for the center of mass vector Gi. However, the static (i.e., p̂i = 0) part of
the Hamiltonian is left completely undetermined by the Poincaré algebra approach
in [117].

In order to get the complete next-to-leading order Hamiltonian only the static
part of the Hamiltonian is missing, as well as the corresponding center of mass
vector Gi. The latter is needed to consistently fix the canonical representation of
the nonstatic part of the Hamiltonian given in [117]. Fortunately the center of mass
vector does not depend on p̂i at the considered order. Therefore both the static part
of the Hamiltonian and the center of mass vector are determined if we only know the
static part of the source of the constraints. For pi = 0 we get from the stress-energy
tensor (5.3, 5.10, 5.11)

Hmatter
S2, pi=0 =

∑
a

(
1

2
γkiγljQaijδa

)
;kl

, (5.33)

but no further contributions to Hmatter
i arise. Though there is no difference to (5.32),

this source term is now valid to next-to-leading order for the case pi = 0.

However, we need the source terms for the case p̂i = 0 and not for pi = 0. Also
position and spin variables are not yet the canonical ones and we must discuss
whether the variable redefinitions will have an impact on the source terms in the
static case. As there are no contributions toHmatter

i at quadratic level in spin for pi =
0, no further static contributions to the redefinition of spin and momentum variables
can arise from the conditions (4.30) and (4.31). Though static contributions to
zi∆a(4) could be necessary, they can be removed by a canonical transformation with

generator −p̂izi∆a(4). (Notice that in the case p̂i = 0 this transformation only changes

the position variable.) Finally only the redefinitions found at the linear order in spin
are relevant and only (4.33) gives contributions in the static case. The result for the
static source finally reads

Hmatter
S2, p̂i=0 =

∑
a

[(
1

2
γkiγljQ̂aij δ̂a

)
;kl

+
1

8ma

γmnγ
pjγqlγmi,pγ

nk
,qŜaijŜaklδ̂a

+
1

4ma

(
γijγmnγkl,mŜalnŜajkδ̂a

)
,i

]
,

(5.34)
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where

Q̂aij =
CQa
m

(
γklŜaikŜajl −

1

3
γijγ

klγmnŜakmŜaln

)
. (5.35)

Equation (5.34) was found for the black hole case CQa = 1 in [17] from a 3-
dimensional covariant ansatz for Hmatter

S2, pi=0
containing four coefficients. Two of these

coefficients were fixed by matching to the Kerr metric, but the other two gave no
contribution to the Hamiltonian or to the center of mass vector. One of the latter
two coefficients would also arise here if we would have kept the trace part of the
mass quadrupole, Qρ

ρ. The ansatz in [17] was generalized to arbitrary CQa in [19].
The derivation given in this section is quite involved and it would thus be desirable

to give a more coherent one with the help of the action approach in the future. This
would also facilitate further investigations of quadrupole or higher multipole effects
with the help of canonical methods.
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In this chapter the obtained canonical formalism is applied to calculations within
the post-Newtonian approximation. In particular, the next-to-leading order spin
corrections to the conservative Hamiltonian are derived. The Hamiltonians are
checked with the help of the global Poincaré algebra.

In this chapter we make use of xTensor [118], a free package for Mathematica
[119], especially of its fast index canonicalizer based on the package xPerm [120].

6.1. Post-Newtonian Expansion

The post-Newtonian expansion of the ADM Hamiltonian has been well studied for
nonspinning objects, for the second post-Newtonian level see [121], and up to and in-
cluding the 3.5 post-Newtonian order see [34, 122–124]. From this expanded Hamil-
tonian the approximate equations of motion can be derived in a straightforward
way. In this section we derive general formulas for the ADM Hamiltonian up to and
including the formal second post-Newtonian order, which will then be applied to
calculate spin corrections to the Hamiltonian in section 6.2. Another interesting ap-
plication would be to obtain spin corrections to the post-Minkowskian Hamiltonian,
see, e.g., [125] for the nonspinning case.

Besides the ADM formalism, there are various other methods available for post-
Newtonian calculations. The equations of motion at the first post-Newtonian or-
der are due to Einstein, Infeld, and Hoffmann [126], obtained with the help of a
surface integral approach. This method got further developed and applied up to
and including the third post-Newtonian level, see, e.g., [127]. A further important
method uses point-masses in harmonic gauge, which also succeeded to derive the
third post-Newtonian order equations of motion; for a review see [5]. This method
has advantages for flux and waveform calculations, which succeeded up to the third
post-Newtonian order [128] (corresponding to the knowledge of the equations of
motion at the 5.5 post-Newtonian level, which seem to be impossible to obtain di-
rectly). Another approach in the harmonic gauge is the direct integration of the
relaxed Einstein equations, see, e.g., [129]. More recently also methods inspired by
quantum field theory were developed, see, e.g, [110, 130]. An advantage of these
methods is that some of the very sophisticated and systematic techniques for pertur-
bative calculations used in high energy physics can be applied in a straightforward
way.
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6.1.1. Review of the Formalism

We now give a short summary of the calculation of the ADM Hamiltonian. First
the field constraints

1

16π
√
γ

[
γR +

1

2

(
γijπ

ij
)2 − γijγklπikπjl

]
= Hmatter , − 1

8π
γijπ

jk
;k = Hmatter

i ,

(6.1)
have to be solved within the ADM transverse traceless gauge, which for the metric
leads to the decomposition

γij =

(
1 +

φ

8

)4

δij + hTT
ij , (6.2)

at least to linear order in spin. Such a solution can in general only be found in some
approximation scheme and we consider the post-Newtonian one here. Having the
decomposition (6.2) one can solve the Hamilton constraint for φ (this will become
obvious in the next section). Then we can calculate the ADM Hamiltonian

HADM = − 1

16π

∫
d3x∆φ , (6.3)

which must be expressed in terms of the canonical variables. It is suitable to al-
ready express the source terms Hmatter and Hmatter

i in terms of the canonical matter
variables, which is done in section 6.2.1. Then no further redefinition of the matter
variables is necessary.

However, it seems to be simpler to perform the redefinition of the field momentum
after solving the constraints. As the gauge condition at linear order in spin now reads
π̂ii = 0, or, with (4.18), (4.50), and Bkl

ij δkl = 0,

πii = −16π
∑
a

πiia δ̂a = −16π
∑
a

δijγ
ikγjl

map̂aknSal
2np̂a(ma − np̂a)

δ̂a , (6.4)

the decomposition (2.51) is not valid any more. But we can still use the general
decomposition

πij = πijTT + π̃ij + π̆ij , (6.5)

with

πijTT = δTTij
kl πkl , π̆ij =

1

2

(
δij − ∂i∂j∆−1

)
πkk , (6.6)

π̃ij = π̃i,j + π̃j ,i −
1

2
δijπ̃

k
,k −

1

2
∆−1π̃k,ijk , (6.7)

and the vector potential is still π̃i = ∆−1πij ,j. This can be shown by inserting (6.6,
6.7) and (2.55) into (6.5), which then turns into an identity. The new part π̆ij can
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immediately be obtained using (6.4). After the constraints have been solved using
this decomposition, we go over to the canonical field momentum π̂ijTT by

πijTT = π̂ijTT − 16π
∑
a

δTTij
kl πkla δ̂a . (6.8)

No redefinition of hTT
ij is needed at the linear order in spin.

6.1.2. Expansion of the Constraints

Now we expand the constraints according to the formal post-Newtonian counting
rules introduced in section 4.2.3. Notice that only the field parts φ, π̃ij, and π̆ij are
expanded, but not hTT

ij and πijTT. The latter are still dynamical variables in the
ADM Hamiltonian and can be expanded only after their equations of motion were
obtained and solved. For the Hamilton constraint we get

− 1

16π
∆φ(2) = Hmatter

(2) , − 1

16π
∆φ(4) = Hmatter

(4) − 1

8
Hmatter

(2) φ(2) , (6.9)

− 1

16π
∆φ(6) = Hmatter

(6) − 1

8

(
Hmatter

(4) φ(2) +Hmatter
(2) φ(4)

)
+

1

64
Hmatter

(2) φ2
(2)

+
1

16π

[(
π̃ij(3)

)2

− 1

2

(
φ(2)h

TT
ij

)
,ij

]
,

(6.10)

− 1

16π
∆φ(8) =

1

16π

[
1

8
φ(2)

(
π̃ij(3)

)2

+ 2π̃ij(3)π̃
ij
(5) −

1

16
φ(2),iφ(2),jh

TT
ij +

1

4

(
hTT
ij,k

)2
]

+Hmatter
(8) − 1

8

(
Hmatter

(6) φ(2) +Hmatter
(4) φ(4) +Hmatter

(2) φ(6)

)
+

1

64

(
Hmatter

(4) φ2
(2) + 2Hmatter

(2) φ(2)φ(4)

)
− 1

512
Hmatter

(2) φ3
(2) + (td) ,

(6.11)

up to and including the formal second post-Newtonian order. These equations can
be solved iteratively for φ by applying an inverse Laplacian to them. The ADM
Hamiltonian (6.3) results from an integration over the right-hand sides of these
equations. It was used that π̆ij = O (c−9) at linear order in spin.

However, we also have to solve the momentum constraint as πij appears on the
right-hand side of the Hamilton constraint. The expansion of the momentum con-
straint immediately follows from the exact formula

π̃ij ,j = −8πHmatter
i +Bij

,j +Ci −∆
(
V khTT

ki

)
+

1

2
πjkTThTT

jk,i − (πjkTThTT
ki ),j , (6.12)

with

Bij =
[
1−

(
1 + 1

8
φ
)4
]

(π̃ij + πijTT) + V k(hTT
ki,j + hTT

kj,i − hTT
ij,k)−

1

3
V k

,kh
TT
ij , (6.13)
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Ci =
1

2
π̆jkγjk,i − π̆jkγij,k , (6.14)

which is analogous to (4.21). Here we introduced the alternative vector potential

V i =

(
δij −

1

4
∂i∂j∆

−1

)
π̃j , (6.15)

for which it holds

π̃ij = V i
,j + V j

,i −
2

3
δijV

k
,k . (6.16)

To the considered order we thus have

π̃ij(3),j = −8πHmatter
(3)i , π̃ij(5),j = −8πHmatter

(5)i − 1

2

(
φ(2)π̃

ij
(3)

)
,j
. (6.17)

With the help of π̃i = ∆−1π̃ij ,j , the expanded momentum constraint can be solved
iteratively for π̃i by applying an inverse Laplacian to it. π̃ij and V i then follow from
(6.7) and (6.15).

6.1.3. Formulas for Hamiltonians

The first contribution to the ADM Hamiltonian (6.3) results from an integration
over the first relation in (6.9) as

H0 =

∫
d3xHmatter

(2) . (6.18)

Notice that Hmatter
(2) is just the Newtonian mass density, so H0 is the constant energy

belonging to the total Newtonian mass. Similarly, from the second relation in (6.9)
we obtain the Newtonian Hamiltonian

HN =

∫
d3x

[
Hmatter

(4) − 1

8
φ(2)Hmatter

(2)

]
. (6.19)

φ(2) results from (6.9) as
φ(2) = −16π∆−1Hmatter

(2) , (6.20)

and agrees up to a factor with the Newtonian gravitational potential of the mass
distribution Hmatter

(2) . Hmatter
(4) is the Newtonian kinetic energy density.

Next we proceed to the Hamiltonian at the first post-Newtonian order. However,
we first apply the partial integration formulas

1

8
φ(4)Hmatter

(2) =
1

8

(
Hmatter

(4) − 1

8
φ(2)Hmatter

(2)

)
φ(2) + (td) ,

1

16π

(
π̃ij(3)

)2

= V i
(3)Hmatter

(3)i + (td) ,

(6.21)
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to the right-hand side of (6.10), following from the formal solution

φ(4) = −16π∆−1

[
Hmatter

(4) − 1

8
φ(2)Hmatter

(2)

]
, (6.22)

of the Hamilton constraint and from (6.16, 6.17). V i
(3) is determined by (6.15) and

π̃i(3) = −8π∆−1Hmatter
(3)i . (6.23)

Finally we get for the first post-Newtonian (PN) order Hamiltonian

H1PN =

∫
d3x

[
Hmatter

(6) − 1

4
φ(2)Hmatter

(4) +
1

32
φ2

(2)Hmatter
(2) + V i

(3)Hmatter
(3)i

]
. (6.24)

Notice that all terms in the Hamiltonian involve matter source terms Hmatter or
Hmatter
i and are thus integrations over delta distributions only. Further only the

Newtonian potential φ(2) and the leading order vector potential V i
(3) need to be

determined (lapse N and shift N i are not even needed at any higher order). This
shows the efficiency of the ADM formalism in calculating the conservative post-
Newtonian dynamics.

In the same way one can obtain a formula for the second post-Newtonian Hamil-
tonian

HADM
2PN =

∫
d3x

[
Hmatter

(8) − 1

8

(
2φ(2)Hmatter

(6) + φ(4)Hmatter
(4)

)
− 1

256
φ3

(2)Hmatter
(2)

+
1

64

(
2φ2

(2)Hmatter
(4) + 3φ(2)φ(4)Hmatter

(2)

)
+ 2V i

(3)Hmatter
(5)i

+
1

16π

(
− φ(2)

(
π̃ij(3)

)2

− 1

8
φ(2),iφ(2),jh

TT
ij +

1

4

(
hTT
ij,k

)2
)]

,

(6.25)

where the partial integrations

φ(6)Hmatter
(2) = φ(2)Hmatter

(6) − 1

8

(
φ2

(2)Hmatter
(4) + φ(2)φ(4)Hmatter

(2)

)
+

1

64
φ3

(2)Hmatter
(2)

+
1

16π

[
φ(2)

(
π̃ij(3)

)2

+
1

2
φ(2),iφ(2),jh

TT
ij

]
+ (td) ,

(6.26)

π̃ij(3)π̃
ij
(5) = 16πV i

(3)Hmatter
(5)i − 1

2
φ(2)

(
π̃ij(3)

)2

+ (td) , (6.27)

were used. Notice that φ(6) and π̃ij(5) were eliminated from the Hamiltonian by

these partial integrations. Therefore no solutions to the constraints besides (6.20),
(6.22), and (6.23) have to be determined explicitly. The Hamiltonian HADM

2PN has
the additional label ADM as it still depends on the dynamical field variable hTT

ij .
The elimination of hTT

ij from HADM
2PN leads to the matter-only Hamiltonian H2PN and

is discussed in the next section. Further πijTT first appears at the formal third
post-Newtonian level.

Notice that the obtained formulas are valid for quite general source expressions
Hmatter and Hmatter

i , not only to the ones linear in spin.
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6.1.4. Matter-Only Hamiltonian

In the last section the ADM Hamiltonian HADM was expanded as

HADM = H0 +HN +H1PN +HADM
2PN + · · · . (6.28)

The conservative matter-only Hamiltonian results from plugging the solution for
hTT
ij and π̂ijTT into the action, Eq. (3.63) (and a subsequent elimination of emerging

higher order time derivatives of the matter variables), see [123]. As π̂ijTT is neglected
at the considered order, the first term in (3.63) does not contribute here. Therefore
HADM

2PN turns into the matter-only Hamiltonian H2PN by simply inserting the solution
for hTT

ij into HADM
2PN .

The field evolution can be obtained from the ADM Hamiltonian by

∂hTT
ij

∂t
= {hTT

ij , HADM} = 16πδTTij
kl

δHADM

δπ̂klTT
,

∂π̂ijTT

∂t
= {π̂ijTT, HADM} = −16πδTTij

kl

δHADM

δhTT
kl

.

(6.29)

However, as the π̂ijTT-contributions are of higher order here, we formally just have

0 = δTTij
kl

δHADM
2PN

δhTT
kl

, (6.30)

or explicitly, given that Hmatter
(8) has contributions linear in hTT

ij ,

∆hTT
ij = 2δTTkl

ij f(4)kl , with f(4)ij = 16π
δ
(∫

d3xHmatter
(8)

)
δhTT

ij

− 1

8
φ(2),iφ(2),j . (6.31)

Using the formal solution hTT
ij = 2δTTkl

ij ∆−1f(4)kl, all contributions of hTT
ij to H2PN

can be collected as

+
1

16π

∫
d3x

1

4
hTT
ij ∆hTT

ij = +
1

16π

∫
d3x

1

2
hTT
ij f(4)ij . (6.32)

If one is interested in the spin contribution of this integral only, one can obviously
perform a partial integration in (6.32) in such a way that only the spin part of hTT

ij

is needed, see also [14]. This is desirable as the spin-dependent part of hTT
ij is much

simpler than the spin-independent part.
Though the discussion of hTT

ij was straightforward here, it is quite subtle to obtain
the post-Newtonian expansion of (6.29) at higher orders. Indeed, it is not easy to
correctly implement the boundary conditions into the solution of the first order
equations (6.29). At higher orders (6.29) can be converted into a (second order)
wave equation for hTT

ij , with source terms expanded according to the post-Newtonian
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counting rules. In [122, 123] this wave equation is then solved order by order using
a near zone expansion of the retarded solution up to the 3.5 post-Newtonian order,
corresponding to the boundary condition of no incoming gravitational waves; see
also, e.g., [5] for other aspects like tails. Equation (6.31) is indeed the leading order
near zone approximation of the wave equation for hTT

ij . The solution for hTT
ij at

higher orders is responsible for the half post-Newtonian orders in the matter-only
Hamiltonian, starting at the 2.5 post-Newtonian order.

6.2. Spin Corrections to the Hamiltonian

By now there are a lot of results regarding spin effects at the conservative orders
in the post-Newtonian approximation. The main goal of this section is to derive
the next-to-leading order spin effects within the developed formalism, which were
tackled only recently. Even higher post-Newtonian orders linear in spin were derived
recently in [44] for test spinning objects in the Kerr metric. Also Hamiltonians
of cubic and higher order in spin were obtained for binary black holes [44, 116,
117]. The calculation of the leading order dissipative spin-orbit and spin(1)-spin(2)
Hamiltonians was prepared in [15]. The corresponding equations of motion were
already obtained [131]; see also the considerations in terms of orbital elements in
[132].

More work needs to be done for an application of the Hamiltonians derived in this
section to gravitational wave astronomy. In particular the spin contributions to the
next-to-leading order radiation field are only known for the spin-orbit case [102], but
not yet for the spin(1)-spin(2) and spin(1)-spin(1) cases (for the latter case the stress-
energy tensor derived in chapter 5 is needed). Further, it would be useful to find
a parametrization of the orbits by solving the equations of motion, i.e., extending
the solutions from [133, 134] at least to some of the new Hamiltonians. Finally,
one should consider to incorporate the new Hamiltonians into the very successful
effective one-body approach [9], which already succeeded for the leading order spin
Hamiltonians [10] as well as for the next-to-leading order spin-orbit Hamiltonian
[11].

Formulas and regularization procedures for the integrals that need to be solved
in this section are given in, e.g., [122, 123, 135]. Some parts of the calculations were
also checked using Riesz kernels in arbitrary dimension, see, e.g., [35].

6.2.1. Field Constraints in Canonical Variables

Before starting the calculation of the Hamiltonians, it is suitable to express the
source terms of the constraints Hmatter and Hmatter

i in terms of the canonical mat-
ter variables. Then the formulas provided in section 6.1.3 automatically give the
Hamiltonian (the redefinition of πijTT is not necessary here). Applying the variable
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redefinitions from section 3.2.2 to (3.39, 3.40) leads to

Hmatter =
∑
a

[
− np̂aδ̂a −

1

2

(
Ŝalip̂aj
np̂a

+ γmn
Ŝamip̂aj p̂anp̂al

(np̂a)2(ma − np̂a)

)
γklγij ,kδ̂a

+
p̂ajγ

ji

np̂a
Âkla e(m)ke

(m)
l,iδ̂a −

(
p̂al

ma − np̂a
γijγklŜajkδ̂a

)
,i

]
,

(6.33)

Hmatter
i =

∑
a

[
p̂aiδ̂a − Âkla e(m)ke

(m)
l,iδ̂a +

1

2

(
sija δ̂a

)
,j

]
, (6.34)

where

sija = γjkŜaik + γjkγlp
2p̂alp̂a(iŜak)p

np̂a(ma − np̂a)
, (6.35)

and Âkl given by (3.44). These source expressions are valid in general, also within the
test-spin Hamiltonian (3.47). In the spatial symmetric gauge it holds Âkla e(m)ke

(m)
l,µ =

πkla γkl,µ, where (3.55) and (4.49) were used and πkla is given by (4.50). Notice that
the variable redefinitions from the action approach leading to these expressions have
been checked up to and including the formal 3.5 post-Newtonian order by the sym-
metry generator approach [15]. This includes the formal third post-Newtonian or
next-to-next-to-leading order linear in spin, which for maximal spin is at the 3.5
post-Newtonian order in the spin-orbit case and at the fourth post-Newtonian order
in the spin(1)-spin(2) case. It was shown in [15] as a further check to the same level
of approximation that the wave equation for hTT

ij following from the ADM Hamilto-
nian agrees with the Einstein equations, which again verifies that the used variables
are canonical.

The expansion of Hmatter sufficient for the formal second post-Newtonian Hamil-
tonian reads

Hmatter
(2) =

∑
a

maδ̂a , Hmatter
(4) =

∑
a

[
p̂2
a

2ma

δ̂a +
1

2ma

p̂aiŜa(i)(j)δ̂a,j

]
, (6.36)

Hmatter
(6) =

∑
a

[
− (p̂2

a)
2

8m3
a

δ̂a −
p̂2
a

4ma

φ(2)δ̂a +
1

4ma

p̂aiŜa(i)(j)φ(2),j δ̂a

− p̂2
a

8m3
a

p̂aiŜa(i)(j)δ̂a,j −
1

4ma

p̂aiŜa(i)(j)(φ(2)δ̂a),j

]
,

(6.37)

Hmatter
(8) =

∑
a

[
(p̂2

a)
3

16m5
a

δ̂a +
(p̂2

a)
2

8m3
a

φ(2)δ̂a +
5p̂2

a

64ma

φ2
(2)δ̂a −

p̂2
a

4ma

φ(4)δ̂a −
1

2ma

p̂aip̂ajh
TT
ij δ̂a

− p̂2
a

8m3
a

p̂aiŜa(i)(j)φ(2),j δ̂a −
5

32ma

p̂aiŜa(i)(j)φ(2)φ(2),j δ̂a

+
1

4ma

p̂aiŜa(i)(j)φ(4),j δ̂a +
1

2ma

p̂aiŜa(j)(k)h
TT
ij,kδ̂a

]
+ (td) ,

(6.38)
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where p̂a = (p̂ai). The expansion of the source Hmatter
i is given by (6.34) and

sija(3) = Ŝa(i)(j) , sija(5) = − 1

2m2
a

p̂ak(p̂aiŜa(j)(k) + p̂ajŜa(i)(k)) . (6.39)

Notice that the triad terms in (6.34) do not contribute at the considered order.
The expansion of the static source terms needed at the spin(1)-spin(1) order follow

from (5.34) as

Hmatter
(4) S2, p̂i=0 =

∑
a

1

2
Q̂a(i)(j)δ̂a,ij , (6.40)

Hmatter
(6) S2, p̂i=0 =

∑
a

[
1

4
Q̂a(i)(j)(φ(2),iδ̂a),j −

1

4
Q̂a(i)(j)(φ(2)δ̂a),ij

+
1

8ma

Ŝa(i)(k)Ŝa(j)(k)(φ(2),iδ̂a),j

]
,

(6.41)

Hmatter
(8) S2, p̂i=0 = −

∑
a

1

32ma

Ŝa(i)(k)Ŝa(k)(j)φ(2),iφ(2),j δ̂a + (td) , (6.42)

and it holds

Q̂a(i)(j) =
CQa
ma

(
Ŝa(i)(k)Ŝa(j)(k) −

2

3
δijŜ

2
a

)
. (6.43)

Here Ŝa = (Ŝa(i)) and Ŝa(i) = 1
2
εijkŜa(j)(k). No further contributions to Hmatter

i arise
in the spin(1)-spin(1) case.

6.2.2. Leading Order

The leading order spin effects are at the formal first post-Newtonian order and
their Hamiltonian can be obtained from (6.24), which of course gives the first post-
Newtonian Hamiltonian in the nonspinning case. The needed solutions of the con-
straints read

φ(2) = 4
∑
a

ma

r̂a
, π̃i(3) =

∑
a

[
2
p̂ai
r̂a

+ Ŝa(i)(j)

(
1

r̂a

)
,j

]
, (6.44)

V i
(3) =

∑
a

[
2
p̂ai
r̂a
− 1

4
p̂aj r̂a,ij + Ŝa(i)(j)

(
1

r̂a

)
,j

]
, (6.45)

where r̂a = |x− ẑa| and ẑa = (ẑia). The leading order (LO) spin-orbit (SO) Hamil-
tonian follows as

HLO
SO =

∑
a

∑
b 6=a

1

r̂2
ab

(Ŝa × n̂ab) ·
[

3mb

2ma

p̂a − 2p̂b

]
, (6.46)
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where r̂ab = |ẑa − ẑb| and n̂ab = (ẑa − ẑb)/r̂ab. This Hamiltonian is at the 1.5 post-
Newtonian order for maximal spins. Further, the leading order spin(a)-spin(b), or
SaSb, Hamiltonian results as

HLO
SaSb

=
∑
a

∑
b6=a

1

2r̂3
ab

[
3(Ŝa · n̂ab)(Ŝb · n̂ab)− (Ŝa · Ŝb)

]
. (6.47)

For maximal spins this Hamiltonian is at the second post-Newtonian level. Finally,
the leading order spin(a)-spin(a), or S2

a, Hamiltonian is given by

HLO
S2
a

=
∑
a

∑
b 6=a

CQamb

2mar̂3
ab

[
3(Ŝa · n̂ab)2 − Ŝ2

a

]
, (6.48)

which is also at the second post-Newtonian order for maximal spins. All Hamil-
tonians in this section are valid for arbitrary many spinning objects. The Poisson
brackets are the standard canonical ones, i.e.,

{ẑia, p̂aj} = δij , {Ŝa(i), Ŝa(j)} = εijkŜa(k) , (6.49)

zero otherwise.

The leading order spin effects derived here are well-known for black holes (CQ =
1), see, e.g., [136, 137]. For the leading order CQ-dependence see [105, 137].

6.2.3. Next-to-Leading Order

Now we proceed to the formal second post-Newtonian Hamiltonian (6.25), which
includes the next-to-leading order spin effects. There we also need the functions

φ(4) =
∑
a

[
2p̂2

a

mar̂a
−
∑
b 6=a

2mamb

r̂abr̂a
+

2p̂aiŜa(i)(j)

ma

(
1

r̂a

)
,j

+ 2Q̂a(i)(j)

(
1

r̂a

)
,ij

]
, (6.50)

π̃ij(3) =
∑
a

[
2p̂ai

(
1

r̂a

)
,j

+ 2p̂aj

(
1

r̂a

)
,i

− δij p̂ak
(

1

r̂a

)
,k

− 1

2
p̂akr̂a,ijk

− Ŝa(k)(i)

(
1

r̂a

)
,kj

− Ŝa(k)(j)

(
1

r̂a

)
,ki

]
.

(6.51)

Notice that there are CQa-contributions in (6.50). We restrict to two spinning objects
in this section. The results provided here complete the knowledge of spin corrections
to the Hamiltonian up to and including the third post-Newtonian order for maximal
spins.
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Next-to-Leading Order Spin-Orbit

Following the method developed here, the next-to-leading order (NLO) spin-orbit
Hamiltonian results as [14]

HNLO
SO = −((p̂1 × Ŝ1) · n̂12)

r̂3
12

[
11m2

2
+

5m2
2

m1

]
+

((p̂2 × Ŝ1) · n̂12)

r̂3
12

[
6m1 +

15m2

2

]
− ((p̂1 × Ŝ1) · n̂12)

r̂2
12

[
5m2p̂

2
1

8m3
1

+
3(p̂1 · p̂2)

4m2
1

− 3p̂2
2

4m1m2

+
3(p̂1 · n̂12)(p̂2 · n̂12)

4m2
1

+
3(p̂2 · n̂12)2

2m1m2

]
+

((p̂2 × Ŝ1) · n̂12)

r̂2
12

[
(p̂1 · p̂2)

m1m2

+
3(p̂1 · n̂12)(p̂2 · n̂12)

m1m2

]
+

((p̂1 × Ŝ1) · p̂2)

r̂2
12

[
2(p̂2 · n̂12)

m1m2

− 3(p̂1 · n̂12)

4m2
1

]
+ (1↔ 2) , (6.52)

where (1 ↔ 2) indicates an exchange of particle labels, and is identical to the one
derived earlier in [84]. The next-to-leading order spin-orbit case was first tackled on
the level of the equations of motion in [138] and was later rederived and improved
in [139] (both in the harmonic gauge). Within the ADM canonical formalism the
Hamiltonian HNLO

SO corresponding to these equations of motion was obtained in [84]
from the spin equation of motion (2.28). The linear-in-G part of HNLO

SO was also
derived in [116] from corresponding source terms of the constraints, similar to the
approach used here (however, in [116] the source terms were obtained from the
approximate Kerr metric in the ADM transverse traceless gauge). Very recently
derivations within the effective field theory approach also succeeded [140].

Next-to-Leading Order Spin(1)-Spin(2)

The spin(1)-spin(2), or S1S2, Hamiltonian reads [20]

HNLO
S1S2

=
1

2m1m2r̂3
12

[3
2
((p̂1 × Ŝ1) · n̂12)((p̂2 × Ŝ2) · n̂12) + 1

2
(Ŝ1 · Ŝ2)(p̂1 · p̂2)

+ 6((p̂2 × Ŝ1) · n̂12)((p̂1 × Ŝ2) · n̂12)− 1
2
(Ŝ1 · p̂2)(Ŝ2 · p̂1)

− 15(Ŝ1 · n̂12)(Ŝ2 · n̂12)(p̂1 · n̂12)(p̂2 · n̂12) + (Ŝ1 · p̂1)(Ŝ2 · p̂2)

− 3(Ŝ1 · n̂12)(Ŝ2 · n̂12)(p̂1 · p̂2) + 3(Ŝ1 · p̂2)(Ŝ2 · n̂12)(p̂1 · n̂12)

+ 3(Ŝ2 · p̂1)(Ŝ1 · n̂12)(p̂2 · n̂12) + 3(Ŝ1 · p̂1)(Ŝ2 · n̂12)(p̂2 · n̂12)

+ 3(Ŝ2 · p̂2)(Ŝ1 · n̂12)(p̂1 · n̂12)− 3(Ŝ1 · Ŝ2)(p̂1 · n̂12)(p̂2 · n̂12)]

+
3

2m2
1r̂

3
12

[−((p̂1 × Ŝ1) · n̂12)((p̂1 × Ŝ2) · n̂12) + (Ŝ1 · Ŝ2)(p̂1 · n̂12)2

− (Ŝ1 · n̂12)(Ŝ2 · p̂1)(p̂1 · n̂12)] +
3

2m2
2r̂

3
12

[(Ŝ1 · Ŝ2)(p̂2 · n̂12)2
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− ((p̂2 × Ŝ2) · n̂12)((p̂2 × Ŝ1) · n̂12)− (Ŝ2 · n̂12)(Ŝ1 · p̂2)(p̂2 · n̂12)]

+
6(m1 +m2)

r̂4
12

[(Ŝ1 · Ŝ2)− 2(Ŝ1 · n̂12)(Ŝ2 · n̂12)] , (6.53)

and was confirmed by [114, 141]. Notice that no agreement with the result in [142]
could be found, see [20]. Indeed, the result in [142] turned out to be incomplete
[20, 114].

Next-to-Leading Order Spin(1)-Spin(1)

A nonreduced potential (i.e., with the spin supplementary condition not eliminated
on the level of the potential) for the next-to-leading order spin(1)-spin(1), or S2

1,
dynamics is given in [107, 143]. Within the method described in section 5.3.2 an
equivalent Hamiltonian HNLO

S2
1

will be derived here. This Hamiltonian was first given

only for the black hole case (CQ1 = 1) in [17] and then generalized to arbitrary
CQ1 later [19]. However, the comparison with [107, 143] was quite cumbersome.
First agreement with [107] could not even be found in the spin precession equation
[17], however, this finally succeeded after identifying a sign typo in [107], see [18]
(all for the case CQ1 = 1). After a further correction [143] full agreement was
finally found in [19], now also for arbitrary CQ1. For this comparison the potential
from [107, 143] was first transformed into a fully reduced Hamiltonian in [19] by
a Legendre transformation and an elimination of the spin supplementary condition
using Dirac brackets (2.75). Then a canonical transformation leading to our result
in [19] was searched for and found.

The result for general compact objects (including neutron stars) is [19]

HNLO
S2
1

=
m2

m3
1r̂

3
12

[(
−5

4
+

3

2
CQ1

)
(Ŝ1 · p̂1)2 +

(
−21

8
+

9

4
CQ1

)
p̂2

1(Ŝ1 · n̂12)2

+

(
15

4
− 9

2
CQ1

)
(p̂1 · n̂12)(Ŝ1 · n̂12)(Ŝ1 · p̂1) +

(
5

4
− 5

4
CQ1

)
p̂2

1Ŝ
2
1

+

(
−9

8
+

3

2
CQ1

)
(p̂1 · n̂12)2Ŝ2

1

]
+

CQ1

m1m2r̂3
12

[
9

4
p̂2

2(Ŝ1 · n̂12)2 − 3

4
p̂2

2Ŝ
2
1

]
+

1

m2
1r̂

3
12

[(
−3

2
+

9

2
CQ1

)
(p̂2 · n̂12)(Ŝ1 · n̂12)(Ŝ1 · p̂1)

− 15

4
CQ1(p̂1 · n̂12)(p̂2 · n̂12)(Ŝ1 · n̂12)2 +

(
3

2
− 3

2
CQ1

)
(Ŝ1 · p̂1)(Ŝ1 · p̂2)

+

(
−3 +

3

2
CQ1

)
(p̂1 · n̂12)(Ŝ1 · n̂12)(Ŝ1 · p̂2) +

(
−3

2
+

9

4
CQ1

)
(p̂1 · p̂2)Ŝ2

1

+

(
3

2
− 3

4
CQ1

)
(p̂1 · n̂12)(p̂2 · n̂12)Ŝ2

1 +

(
3− 21

4
CQ1

)
(p̂1 · p̂2)(Ŝ1 · n̂12)2

]
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+
m2

r̂4
12

[(
−3− 3

2
CQ1

)
(Ŝ1 · n̂12)2 +

(
2 +

1

2
CQ1

)
Ŝ2

1

]
+

m2
2

m1r̂4
12

[
(1 + 2CQ1)Ŝ2

1 + (−1− 6CQ1)(Ŝ1 · n̂12)2

]
. (6.54)

The corresponding spin(2)-spin(2) Hamiltonian HNLO
S2
2

simply results from an ex-

change of particle labels. According to section 5.3.2 the linear-in-G part was de-
rived with the help of the Poincaré algebra method from [117], while the G2 part
(the last two lines) results from the source expressions (6.40–6.42) derived in the
present thesis.

Notice that for black holes (CQ1 = 1) this Hamiltonian was already found in [17],
for the first time including the correct center of mass motion. Further, the earlier
result for the general case in [107, 143] is not a fully reduced Hamiltonian. The
Hamiltonian presented here is on a higher level of sophistication with advantages
for applications, e.g., the spin vectors appearing in our Hamiltonian have a constant
length and it is easier to obtain all equations of motion in terms of these “good”
spin variables.

6.2.4. Center of Mass and Poincaré Algebra

The post-Newtonian expansion of the center of mass vector

Gi = − 1

16π

∫
d3x xi∆φ = Gi

N +Gi
1PN +Gi

2PN + · · · , (6.55)

can be obtained from the expanded Hamilton constraint (6.9, 6.10). To the formal
second post-Newtonian order this leads to

Gi
N =

∫
d3x xiHmatter

(2) , Gi
1PN =

∫
d3x xi

[
Hmatter

(4) − 1

8
Hmatter

(2) φ(2)

]
, (6.56)

Gi
2PN =

∫
d3x

[
xi
(
Hmatter

(6) − 1

8

(
Hmatter

(4) φ(2) +Hmatter
(2) φ(4)

)
+

1

64
Hmatter

(2) φ2
(2) + V i

(3)Hmatter
(3)i

)
+

1

16π

5

2
V i

(3)π̃
k
(3),k

]
.

(6.57)

For the formula for Gi
2PN partial integrations were applied, similar as in section 6.1.3.

Notice that π̃k(3),k is spin-independent. For results in the nonspinning case see [124].
The contributions to the center of mass vector corresponding to the leading order

spin Hamiltonians follow from G1PN = (Gi
1PN) as

GLO
SO =

∑
a

1

2ma

(p̂a × Ŝa) , GLO
S1S2

= 0 , GLO
S2
1

= 0 . (6.58)
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From G2PN = (Gi
2PN) the next-to-leading order parts result as

GNLO
SO =

∑
a

∑
b 6=a

mb

4mar̂ab

[
((p̂a × Ŝa) · n̂ab)

5ẑa + ẑb
r̂ab

− 5(p̂a × Ŝa)

]
+
∑
a

∑
b6=a

1

r̂ab

[
3

2
(p̂b × Ŝa)−

1

2
(n̂ab × Ŝa)(p̂b · n̂ab)

− ((p̂b × Ŝa) · n̂ab)
ẑa + ẑb
r̂ab

]
−
∑
a

p̂2
a

8m3
a

(p̂a × Ŝa) ,

(6.59)

GNLO
S1S2

=
1

2

∑
a

∑
b 6=a

[(
3(Ŝa · n̂ab)(Ŝb · n̂ab)− (Ŝa · Ŝb)

) ẑa
r̂3
ab

+ (Ŝb · n̂ab)
Ŝa
r̂2
ab

]
, (6.60)

GNLO
S2
1

=
m2

m1

[
CQ1

(
3(Ŝ1 · n̂12)2 − Ŝ2

1

) ẑ1 + ẑ2

4r̂3
12

+ (1 + CQ1)Ŝ2
1

n̂12

2r̂3
12

− (1 + 3CQ1)(Ŝ1 · n̂12)
Ŝ1

2r̂2
12

]
.

(6.61)

Notice that (6.59) and (6.60) are valid for arbitrary many spinning objects, while
(6.61) holds for two objects only. For two objects GNLO

SO was already found in [84].
Further, GNLO

S2
2

simply results from an exchange of particle labels in (6.61)

Now one can check whether the Poincaré algebra (2.10, 2.11) is fulfilled, which
is indeed the case (the Hamiltonian plays of course the role of the energy E). At
the spin-orbit level this was already shown in [84]. At the spin(1)-spin(1) level this
holds by construction, as most terms of the Hamiltonian HNLO

S2
1

were obtained from

the Poincaré algebra via an ansatz in [117]. However, the fulfillment of the Poincaré
algebra provides a thorough check of HNLO

SO and HNLO
S1S2

.
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7. Conclusions and Outlook

The first main goal of this thesis, the extension of the ADM canonical formalism
from nonspinning to spinning objects, succeeded to linear order in spin via an ac-
tion approach. The result was verified by an independent order-by-order derivation.
Even the extension to higher orders in spin is well understood now, but somewhat
more complicated and requires further approximations, like the post-Newtonian one.
The second main goal of this thesis, the calculation of conservative Hamiltonians for
inspiralling binaries relevant for gravitational wave astronomy, was then straight-
forward. The effort of first deriving the canonical formalism was payed off by its
efficiency in the calculation of these Hamiltonians. New results are the next-to-
leading order spin(1)-spin(2) and spin(1)-spin(1) Hamiltonians, and the spin-orbit
Hamiltonian derived earlier by Damour, Jaranowski, and Schäfer was confirmed. All
Hamiltonians through the third post-Newtonian order for maximal spin are known.

The next most interesting Hamiltonian which could be calculated is the conserva-
tive next-to-next-to-leading order spin-orbit one, which is at the 3.5 post-Newtonian
level for maximally rotating objects. Notice that the verification of the canonical
formalism given in this thesis via the order-by-order construction already covered
this case. Leading order dissipative Hamiltonians are also envisaged and its cal-
culation was already prepared in [15]. For maximal spins these Hamiltonians are
even at the fourth post-Newtonian order in the spin-orbit case and at the 4.5 post-
Newtonian order in the spin(1)-spin(2) case. The extension of a recent result within
the post-Minkowskian approximation [125] to spinning objects would also be desir-
able, as it could be applied to the gravitational scattering of spinning bodies moving
at relativistic speed.

Further, more work needs to be done for an application of the new Hamiltonians
presented in this thesis to gravitational wave astronomy. In particular the spin
contributions to the next-to-leading order radiation field are only known for the
spin-orbit case [102]. This result should be extended to the spin(1)-spin(2) case, as
well as to the spin(1)-spin(1) case. For the latter the spin(1)-spin(1) contributions
to the stress-energy tensor given in this thesis are crucial. Also an implementation
of the new results given here into the very successful effective one-body approach
would be appealing.

Another though rather mathematical development for the future would be to
consider the full constraint algebra, gravitational field and supplementary conditions,
at different stages of gauge fixing, as well as a treatment using Dirac brackets; see
also [64] for the case of Dirac fields.
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T. Damour and G. Schäfer, “Lagrangians for n point masses at the second
post-Newtonian approximation of general relativity,” Gen. Relativ. Gravit.
17 (1985) 879–905.
T. Damour and G. Schäfer, “Higher-order relativistic periastron advances
and binary pulsars,” Nuovo Cim. B 101 (1988) 127–176.
T. Ohta and T. Kimura, “The two-body motion and the periastron advance
in the post-post-Newtonian approximation,” Prog. Theor. Phys. 81 (1989)
679–689.
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Hamiltonian approach to the general relativistic two-body problem,” Phys.
Rev. D 62 (2000) 021501(R), arXiv:gr-qc/0003051.
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A. Conventions and Symbols

The following conventions and definitions of symbols are already given in the text,
but are collected here for convenience.

Lower case Latin indices from the beginning of the alphabet (a, b, . . . ) label the
individual spinning objects and then consequently take on values from one to the
number of objects. Three different frames are utilized in this thesis, denoted by
different indices. Greek indices (α, µ, . . . ) refer to the coordinate frame, upper
case Latin indices from the middle of the alphabet (I, J , . . . ) belong to a local
Lorentz frame, and upper case Latin indices from the beginning of the alphabet (A,
B, . . . ) denote the so called body-fixed Lorentz frame. Lower case Latin indices
from the middle of the alphabet (i, j, . . . ) are used for the spatial part of the
mentioned frames and are running through i = 1, 2, 3. In order to distinguish the
three frames when splitting them into spatial and time part, we write a = (0), (i)
for Lorentz indices (or a = (0), (1), (2), (3) in more detail), A = [0], [i] for the body-
fixed frame, and µ = 0, i for the coordinate frame. Indices appearing twice in a
product are implicitly summed over its index range, except for label indices of the
objects. Round and square brackets are also used for index symmetrization and
antisymmetrization, respectively, e.g., A(µν) ≡ 1

2
(Aµν +Aνµ). Partial derivatives are

denoted by ∂µ or by a comma as an index ,µ. Similarly, the 4-dimensional covariant
derivative is written as ||µ and the induced 3-dimensional one as ;i. A 3-dimensional
vector is also written in boldface, e.g., x. The signature of spacetime is taken to be
+2. Units are such that the speed of light c and the gravitational constant G are
equal to one. The convention for the Riemann tensor R

(4)
µρβα is such that

aµ||αβ − aµ||βα = R
(4)
νµαβa

ν , (A.1)

for an arbitrary aµ, or

gµρR
(4)
ρναβ = Γµ(4)νβ,α − Γµ(4)να,β + Γρ(4)νβΓµ(4)ρα − Γρ(4)ναΓµ(4)ρβ . (A.2)

A dot ˙ over a symbol denotes the ordinary coordinate-time derivative d
dt

. Variations
and variational derivatives are denoted by a small delta, δ, and the 4-dimensional
covariant differential by D. The Dirac delta distribution is normalized as

∫
dt δ(t) =

1. A number in round brackets also denotes a formal post-Newtonian order in terms
of c−1, see section 4.2.3, and should not be confused with an index in the local
frame (the meaning should always be clear from the context). For a 3-dimensional
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A. Conventions and Symbols

antisymmetric tensor, say, Jij, we sometimes also use the corresponding vector,
Ji = 1

2
εijkJjk.

It follows a table of symbols used in the present thesis. Symbols referring to a
spinning object may have an additional particle label (a, b, 1, 2).

Symbol Definition
a Dimensionless Kerr parameter, can take values between 0 and 1.
ai Vector parametrizing a constant coordinate translation.
Aij Defined by (3.38).

Âij Defined by (3.44).
Bij Defined by (6.13).

B̂ij Defined by (4.23).

Bij
kl Defined by (3.54).

B
(4)
µν Magnetic part of the 4-dimensional Weyl tensor, see (5.19).

c Speed of light, usually put equal to one here.
Ci Defined by (6.14).
CQ Parameter describing quadrupole deformation due to spin.

C
(4)
µναβ 4-dimensional Weyl tensor, see (5.18).

δ Defined as δ = δ(xi − zi).
δ̂ Defined as δ̂ = δ(xi − ẑi).
δ(4) Defined as δ(4) = δ(xµ − zµ).
δij Kronecker delta, (δij) = diag(1, 1, 1).
δTTkl
ij Transverse traceless projector, see (2.55).

∆ Laplace operator, ∆ = ∂i∂i.
∆−1 Inverse of the Laplace operator ∆ for usual boundary conditions.
eIµ Tetrad field, gµν = eIµe

I
ν . The components e(i)j are called triad.

eij Triad in the symmetric gauge, eij = e(i)j = e(j)i, see (3.53).
êij Antisymmetric part of e(i)j, êij ≡ 1

2
(ei(j) − ej(i)).

êija Defined as êija ≡ êij(ẑka).
εijk 3-dimensional Levi-Civita symbol, εijk = (i− j)(j − k)(k− i)/2.

ε
(4)
µναβ 4-dimensional Levi-Civita symbol.

E Total energy of the system.

E
(4)
µν Electric part of the 4-dimensional Weyl tensor, see (5.19).

fµ Timelike vector to which the spin is orthogonal, (3.12, 3.10).
φ Trace part of the induced metric, see (6.2).
ϕi Angle variables parametrizing a rotation.
g Determinant of the 4-dimensional metric gµν .
gµν 4-dimensional metric.
γ Determinant of the induced 3-dimensional metric γij.
γµν Projector to the spatial hypersurfaces, see (2.38). The induced

metric of the hypersurfaces is γij with inverse γij, γikγ
kj = δji .
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Symbol Definition
G Gravitational constant, usually put equal to one here.

Gi Center of mass vector, Gi = Z̃iE.
G Vector notation for Gi.
Γkij 3-dimensional Christoffel symbol of first kind.

Γ
(4)
αµν 4-dimensional Christoffel symbol of first kind.
hTT
ij Transverse traceless part of the induced metric, see (6.2).
H General symbol for a Hamiltonian.
HADM ADM Hamiltonian, see (3.61).
HG Field Hamiltonian before gauge fixing, see (2.46).
HM Test-body Hamiltonian, see (3.47).
HMτ Contains the mass-shell constraint, see (2.64) or (5.28).
H The Hamilton constraint H = Hfield +Hmatter = 0.
Hi The momentum constraint Hi = Hfield

i +Hmatter
i = 0.

Hfield Field part of the Hamilton constraint, see (2.44).
Hfield
i Field part of the momentum constraint, see (2.44).
Hmatter Matter part of the Hamilton constraint, see section 6.2.1.
Hmatter
i Matter part of the momentum constraint, see section 6.2.1.
Hπmatter
i Defined by (4.22).
Hmatter

S2 Quadratic-in-spin part of Hmatter.
I Moment of inertia of a spherical top.
Jµν Total angular momentum of the system, see (2.12) and (4.9).
Ji Total angular momentum vector, Ji = 1

2
εijkJ

jk.
Jµναβ Dixon’s quadrupole moment.

Jbody
a[i][j] Conserved angular momentum of the objects, cf. (4.15).

Jfield
ij Field part of the total angular momentum, see (4.13).
Jmatter
ij Matter part of the total angular momentum, see (4.12).
ki Fourier space coordinate belonging to xi.
k Vector notation for ki.
Kij Extrinsic curvature of the spatial hypersurfaces, see (2.39).
λ Lagrange multiplier for the mass-shell constraint.
λij Antisymmetric Lagrange multiplier, see (3.52).
LM Matter Lagrangian.
LG Field Lagrangian density, see (2.36, 2.40, 2.43).
LM Matter Lagrangian density.
ΛAI Lorentz matrix connecting body-fixed frame and local Lorentz

frame. Λ[i](j) is a rotation matrix in the Newtonian limit.

Λ̂[i](j) Canonical rotation matrix defined by (3.43).
m Mass-like parameter, identical to the dynamical mass

√−pµpµ
at linear order in spin.

m0 Constant mass-like parameter in the spin Lagrangian, see (3.26).
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Symbol Definition
mp Dynamical mass at quadratic level in spin, m2

p = −pµpµ.
M Total mass of the system, M2 = −PµP µ.
nµ Normal vector to the spatial hypersurfaces, see (2.37).
n̂ab Defined by n̂ab = (ẑa − ẑb)/r̂ab.
np Defined by np = nµpµ, see (3.32) or (5.30).

np̂ Defined by np̂ = −
√
m2 + γij p̂ip̂j.

nSi Defined by nSi = nµSµi, see (3.33) and also (3.42).
N Lapse function, see (2.37).
N i Shift vector, see (2.37).
ωij Antisymmetric matrix parametrizing a constant rotation.

ω
[i][j]
a As ωij, but rotates the body-fixed frame, see (4.14).

ωµ
IJ Ricci rotation coefficients, eIαeJβωµ

IJ = −Γ
(4)
βαµ + eKα,µeKβ.

Ωµν Antisymmetric angular velocity tensor, see (3.15). Contains the
usual angular velocity tensor Ωij in the Newtonian limit.

Ω̂(i)(j) Antisymmetric angular velocity tensor, Ω̂(i)(j) = Λ̂[k]
(i) ˙̂

Λ[k](j) .
pµ Linear momentum of the object, see (2.31) or (5.4).
p̂i Canonical momentum conjugate to ẑi.
p̂ Vector notation for p̂i.
pϕi Canonical conjugate to the angle variables ϕi.
Pµ Total linear momentum, P0 = −E and Pi = P field

i + Pmatter
i .

P field
i Field part of the total linear momentum, see (4.11).
Pmatter
i Matter part of the total linear momentum, see (4.10).
Pµν The projector Pµν = gµν − 1

fρfρ
fµf ν .

Pij Defined by (2.15).
πij Canonical field momentum in the nonspinning case, see (2.41).
πijTT Transverse traceless part of πij, see (6.5, 6.6).
πija Spin correction to the canonical field momentum, see (4.18).
π̃i Vector potential for π̃ij, see (6.7).
π̃ij Vector potential part of πij, see (6.5, 6.7).
π̆ij Trace part of πij, see (6.5, 6.6).
π̂ij Canonical field momentum, see (3.58).
π̂ijTT Transverse traceless part of π̂ij, see (3.60).
ˆ̃πi Vector potential for ˆ̃πij, see (3.60).
ˆ̃πij Longitudinal part of π̂ij, see (3.60).
π̄(i)j Canonical conjugate to the triad, see (3.50).
Qµν Mass quadrupole part of Jµναβ, see (5.6).

Q̂ij Defined by (5.35).
QSTF
µν Traceless part of Qµν , see (5.9).

Qµνα Flow quadrupole part of Jµναβ, see (5.6).
Qµναβ Stress quadrupole part of Jµναβ, see (5.6).
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Symbol Definition
r Relative distance of the components of a binary.
r̂a Defined by r̂a = |x− ẑa|.
r̂ab Defined by r̂ab = |ẑa − ẑb|.
R 3-dimensional Ricci scalar, R = γijRij.

R(4) 4-dimensional Ricci scalar, R = gµνR(4)
µν .

Rij 3-dimensional Ricci tensor, Rij = γklRikjl.

R(4)
µν 4-dimensional Ricci tensor, R(4)

µν = gαβR
(4)
µανβ.

Rijkl 3-dimensional Riemann tensor.

R
(4)
µναβ 4-dimensional Riemann tensor.

sija Defined by (4.30), see also (6.35).

S Spin length, 2S2 = SµνSµν = γikγjlŜijŜkl.
Sµν Spin tensor, either general or restricted to (2.32).

Ŝµν Canonical spin tensor, see (2.19) or (3.49).

Ŝ(i) Canonical spin vector, Ŝ(i) = 1
2
εijkŜ(j)(k).

Ŝ Canonical spin vector, Ŝ = (Ŝ(i)) with Ŝ(i) = 1
2
εijkS(j)(k).

S̃µν Spin tensor belonging to the condition (2.6).
t Time coordinate, x0 ≡ t or z0 ≡ t.
τ Worldline parameter, sometimes chosen to be the proper time.
tµν... Multipole moments defined by the ansatz (2.26).
δθIJ Independent antisymmetric variation for ΛAI , δθIJ = ΛA

IδΛAJ .
T µν Stress-energy tensor.
(td) Denotes a total divergence.
uµ 4-velocity, uµ = dzµ

dτ
.

v Relative velocity of a binary.
V i Alternative vector potential for π̃ij, see (6.15, 6.16).

V̂ i Alternative vector potential for ˆ̃πij, see (4.24, 4.25).
W Total action, W = WG +WM .
WG Einstein-Hilbert (gravitational) action, see (2.36).
WM Matter part of the action W .
xµ Spacetime coordinates, x0 ≡ t.
x Vector notation for xi.
zµ Worldline function, z0 ≡ t.
ẑi Canonical position variable.
ẑ Vector notation for ẑi.
zi∆ Possible correction to the canonical position ẑi, see (4.34).
Zµ Center of inertia of the system, belonging to the condition (2.5).

Z̃µ Center of mass of the system, belonging to the condition (2.6).

Ẑµ Center of spin of the system, belonging to the condition (2.7).
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