Johannes Hartung¹

Steven Hergt¹

Gerhard Schäfer¹

Jan Steinhoff²

¹Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena (FSU)

²Centro Multidisciplinar de Astrofísica (CENTRA) Instituto Superior Técnico (IST)

Parma Workshop on Numerical Relativity and Gravitational Waves 2011

$$\begin{split} \sqrt{-g} \mathcal{T}^{\mu\nu}(\mathbf{x}^{\sigma}) &= \int d\tau \bigg[u^{(\mu} p^{\nu)} \delta_{(4)} + \left(u^{(\mu} S^{\nu)\alpha} \delta_{(4)} \right)_{||\alpha} \\ &+ \frac{1}{3} \mathsf{R}_{\alpha\beta\rho}{}^{(\mu} J^{\nu)\rho\beta\alpha} \delta_{(4)} - \frac{2}{3} \left(J^{\mu\alpha\beta\nu} \delta_{(4)} \right)_{||(\alpha\beta)} + \dots \bigg] \\ &u^{\mu} = \frac{dz^{\mu}}{d\tau} \qquad \delta_{(4)} = \delta(z^{\sigma} - x^{\sigma}) \end{split}$$

- Point masses only distinguished by a mass $m = \sqrt{-\rho_{\mu}\rho^{\mu}}$
- Adding a dipole: Spin
- Higher multipoles: Quadrupole, octupole, ... ("finite size effects")
- Problem for GW astronomy: Parameter space becomes very big

$$\begin{split} \sqrt{-g}T^{\mu\nu}(x^{\sigma}) &= \int d\tau \bigg[u^{(\mu}p^{\nu)}\delta_{(4)} + \left(u^{(\mu}S^{\nu)\alpha}\delta_{(4)} \right)_{||\alpha} \\ &+ \frac{1}{3}\mathsf{R}_{\alpha\beta\rho}{}^{(\mu}J^{\nu)\rho\beta\alpha}\delta_{(4)} - \frac{2}{3}\left(J^{\mu\alpha\beta\nu}\delta_{(4)} \right)_{||(\alpha\beta)} + \dots \bigg] \\ &u^{\mu} = \frac{dz^{\mu}}{d\tau} \qquad \delta_{(4)} = \delta(z^{\sigma} - x^{\sigma}) \end{split}$$

- Point masses only distinguished by a mass $m = \sqrt{-p_{\mu}p^{\mu}}$
- Adding a dipole: Spin
- Higher multipoles: Quadrupole, octupole, ... ("finite size effects")
- Problem for GW astronomy: Parameter space becomes very big

$$\begin{split} \sqrt{-g}T^{\mu\nu}(x^{\sigma}) &= \int d\tau \bigg[u^{(\mu}p^{\nu)}\delta_{(4)} + \left(u^{(\mu}S^{\nu)\alpha}\delta_{(4)} \right)_{||\alpha} \\ &+ \frac{1}{3}\mathsf{R}_{\alpha\beta\rho}{}^{(\mu}J^{\nu)\rho\beta\alpha}\delta_{(4)} - \frac{2}{3}\left(J^{\mu\alpha\beta\nu}\delta_{(4)} \right)_{||(\alpha\beta)} + \dots \bigg] \\ &u^{\mu} &= \frac{dz^{\mu}}{d\tau} \qquad \delta_{(4)} = \delta(z^{\sigma} - x^{\sigma}) \end{split}$$

- Point masses only distinguished by a mass $m = \sqrt{-p_{\mu}p^{\mu}}$
- Adding a dipole: Spin
- Higher multipoles: Quadrupole, octupole, ... ("finite size effects")
- Problem for GW astronomy: Parameter space becomes very big

$$\begin{split} \sqrt{-g} T^{\mu\nu}(x^{\sigma}) &= \int d\tau \bigg[u^{(\mu} p^{\nu)} \delta_{(4)} + \left(u^{(\mu} S^{\nu)\alpha} \delta_{(4)} \right)_{||\alpha} \\ &+ \frac{1}{3} \mathsf{R}_{\alpha\beta\rho}{}^{(\mu} J^{\nu)\rho\beta\alpha} \delta_{(4)} - \frac{2}{3} \left(J^{\mu\alpha\beta\nu} \delta_{(4)} \right)_{||(\alpha\beta)} + \dots \bigg] \\ &u^{\mu} = \frac{dz^{\mu}}{d\tau} \qquad \delta_{(4)} = \delta(z^{\sigma} - x^{\sigma}) \end{split}$$

- Point masses only distinguished by a mass $m = \sqrt{-p_{\mu}p^{\mu}}$
- Adding a dipole: Spin
- Higher multipoles: Quadrupole, octupole, ... ("finite size effects")
- Problem for GW astronomy: Parameter space becomes very big

Two Facts on Spin in Relativity

1. Minimal Extension

- ring of radius R and mass M
- spin: S = RMV
- maximal velocity: V ≤ c
 ⇒ minimal extension:

$$R = rac{S}{MV} \ge rac{S}{Mc}$$

2. Center-of-mass

fast & heavy

- now moving with velocity v
- relativistic mass changes inhom.
- frame-dependent center-of-mass
- need spin supplementary condition,

e.g.,
$$S^{\mu
u}
ho_
u=0$$

Two Facts on Spin in Relativity

1. Minimal Extension

- ring of radius R and mass M
- spin: S = RMV
- maximal velocity: V < c</p> \Rightarrow minimal extension:

$$R = rac{S}{MV} \ge rac{S}{Mc}$$

2. Center-of-mass

fast & heavy

- now moving with velocity v
- relativistic mass changes inhom.
- frame-dependent center-of-mass
- need spin supplementary condition,

e.g.,
$$S^{\mu
u} {m
ho}_
u = 0$$

Modeling of Quadrupole Deformation via an Action

- *m_c*, *C_{ES²*}, and μ₂ are assumed to be constants
- Notice: $m_c \neq m$
- From Bailey, Israel (1975):

$$J^{\mu\nu\alpha\beta} = -6\frac{\partial L}{\partial R_{\mu\nu\alpha\beta}}$$

- $J^{\mu
 ulphaeta}$ contains mass, flow, and stress quadrupoles
- Covariant mass quadrupole: (for u = 1)

mass quadrupole
$$\sim 2 \frac{\partial L}{\partial E_{\mu\nu}} = \frac{C_{ES^2}}{m_c} S^{\mu}_{\ \alpha} S^{\alpha\nu} + \mu_2 E^{\mu\nu}$$

Quadrupole Deformation due to Spin

Matching the Coefficient C_{ES2} for Neutron Stars, Laarakkers, Poisson gr-qc/9709033

- Here *m* = 1.4*M*_☉
- Dim.-less mass quadrupole: q
- Dim.-less spin: χ
- Quadratic fit is extremely good:

 $-q pprox C_{ES^2} \chi^2$

Also depends on mass

see Laarakkers, Poisson gr-qc/9709033

- A single star is enough for the matching
- S⁴-coupling $E_{\mu\nu}S^{\mu}{}_{\rho}S^{\rho\nu}S^2$ is highly suppressed
- For black holes $C_{ES^2} = 1$

PN Counting with Spin

 $S = \frac{Gm^2\chi}{2}$ $\chi = 1$ for maximally rotating objects: order 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 H^{N} $\mathsf{PM} + \mathsf{H}^{1\mathsf{PN}} + \mathsf{H}^{2\mathsf{PN}} + \mathsf{H}^{2.5\mathsf{PN}} + \mathsf{H}^{3\mathsf{PN}} + \mathsf{H}^{3.5\mathsf{PN}} + \mathsf{H}^{4\mathsf{PN}} + \mathsf{H}^{4.5\mathsf{PN}}$ SO $+ H_{SO}^{LO} + H_{SO}^{NLO} + H_{SO}^{N^2LO} + H_{SO}^{LO,R} + H_{SO}^{N^3LO}$ $\begin{array}{ccccccc} + & H_{S_{1}^{2}}^{\text{LO}} & + & H_{S_{1}^{2}}^{\text{NLO}} & + & H_{S_{1}^{2}}^{\text{N}^{2}\text{LO}} + & H_{S_{1}^{2}}^{\text{LO},\text{R}} \\ + & H_{S_{1}S_{2}}^{\text{LO}} & + & H_{S_{1}S_{2}}^{\text{N}^{2}\text{LO}} & + & H_{S_{1}S_{2}}^{\text{LO},\text{R}} \\ + & H_{S_{1}S_{2}}^{\text{LO}} & + & H_{S_{1}S_{2}}^{\text{LO},\text{R}} & + & H_{S_{1}S_{2}}^{\text{LO},\text{R}} \end{array}$ S_1^2 S₁S₂ spin³ $+ H_{c^4}^{LO}$ spin⁴ 1 ۰.

H known EOM known for Black Holes not known (yet) Radiation field known to 2.5PN order, multipoles to 3PN order.

Results for Hamiltonians

shown for equal masses, circular orbits, and aligned spins

$$\begin{split} H &= H_{\mathsf{PM}} + H_{\mathsf{S}_1\mathsf{O}} + H_{\mathsf{S}_2\mathsf{O}} + H_{\mathsf{S}_1^2} + H_{\mathsf{S}_2^2} + H_{\mathsf{S}_1\mathsf{S}_2} + H_{\mathsf{S}^3} + H_{\mathsf{S}^4} + \dots + H_{\mathsf{tidal}} + \dots \\ & \mathsf{LO} \qquad \mathsf{NLO} \qquad \mathsf{N}^2\mathsf{LO} \\ H_{\mathsf{S}_1\mathsf{O}} &= S_1 L \bigg\{ \frac{7}{8r^3} + \frac{3}{r^4} \left[-1 + \frac{5}{16} \frac{L^2}{r} \right] + \frac{1}{64r^5} \bigg[401 - \frac{751}{8} \frac{L^2}{r} - \frac{25}{16} \frac{L^4}{r^2} \bigg] + \dots \bigg\} \\ H_{\mathsf{S}_1^2} &= S_1^2 \bigg\{ -\frac{C_{\mathsf{ES}^2}}{8r^3} + \frac{1}{16r^4} \bigg[6C_{\mathsf{ES}^2} + 5 - \frac{17C_{\mathsf{ES}^2} - 11}{4} \frac{L^2}{r} \bigg] + \dots \bigg\} \\ H_{\mathsf{S}_1\mathsf{S}_2} &= S_1 S_2 \bigg\{ -\frac{1}{4r^3} + \frac{1}{2r^4} \bigg[3 - \frac{7}{8} \frac{L^2}{r} \bigg] + \frac{1}{64r^5} \bigg[-271 - 238 \frac{L^2}{r} + \frac{45}{8} \frac{L^4}{r^2} \bigg] + \dots \bigg\} \\ H_{\mathsf{S}^3} &= \frac{5L}{64r^5} (S_1 + S_2)^3 + \dots \qquad \text{yet only known} \\ H_{\mathsf{S}^4} &= -\frac{3}{128r^5} (S_1 + S_2)^4 + \dots \qquad \text{for black holes} \end{split}$$

H_{tidal}: LO/EOB in Damour, Nagar, arXiv:0911.5041 NLO mass-quadrupole in Vines, Flanagan, arXiv:1009.4919

Spin-Orbit: Gyro-Gravitomagnetic Ratios $g_S^{EOB} + g_{S^*}^{EOB}$

for equal masses and circular orbits, A. Nagar arXiv:1106.4349

Future Tasks:

- Calculate spin part of radiation field at 3PN (and beyond)
- Calculation of spin Hamiltonians:
 - $H_{S^3}^{\rm LO}$ and $H_{S^4}^{\rm LO}$ for (neutron) stars
 - $H_{\rm S_1^2}^{\rm N^2LO}$ at 4PN
 - $H_{\rm SO}^{\rm N^{\dot 3}LO}$ and $H_{S^3}^{\rm NLO}$ at 4.5PN (later)
- More on tidal deformations

Questions:

- What are the most interesting future subjects for PN theory?
- What is most relevant for GW astronomy?
- How to cover parameter space with spin for Advanced LIGO (2014)?

Thank you for your attention

and for support by the German Research Foundation **DFG** and by the Fundação para a Ciência e a Tecnologia **FCT**