Exercises

1. Verify that A(y), i.e., the solution of
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is given by
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Here 0, = 6(x — qq) and rq = |x — qq|. (Hint: Use Ary = 2/r; and A(1/r) = —470;
whenever possible.)

2. Verify that the expression

Hipn = — /d3 < - *P(z)sﬂ(o) - %P(O)‘P@) +2j0) - Ap) + ip(0)¢%0)> (3)
simplifies to
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after partial integration of p)p2) = —ﬁ(A@(O))go@) and use of Apn) = —4nG(p2) —

2P0)P(0)-
3. Calculate the following Hamiltonians by performing the integration in equation (4):
a) The leading order (LO) S;S2 Hamiltonian
G
HER, = 5,3 (3(81-112)(S2 - m12) — (S1 - 82)) (5)
12
as the part of equation (4) quadratic in spin. Here r13 = |q1—q2| and ni2 = (q1—q2) /712

b) The leading order spin-orbit (SO) Hamiltonian
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as the part of equation (4) linear in spin.
¢) The 1PN point-mass (PM) Hamiltonian
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as the spin-independent part of equation (4).

Use the formulas for A (o) and j(g) given in exercise 1 as well as
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Drop divergent integrals of the form [ d3z ¢y /r; (undefined self-interactions).



Solution of 3.a

The only term inside the integral in equation (4) contributing to the quadratic-in-spin level is
2j(0) - A(2)- All integrals quadratic in Sy or Sy are divergent and can be dropped. Finally one ends
up with
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and another integral with particle labels 1 and 2 exchanged (this just gives an overall factor of 2).
Here ng, = (x — qq)/7a-



