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Motion in General Relativity

Motivation:

@ Gravitational wave experiments: Advanced LIGO in 2015
(possibly >40 detections of binary NS mergers per year)

@ Pulsar timing via radio astronomy: double pulsar, SKA, ...
(also optical: WD+WD binary J0651+2844)

@ Formation of supermassive BH vs. gravitational recoil ("kick”)
@ Gravity Probe B
@ SgrA*, LRR, Planetary motion, ...
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@ Gravity Probe B
@ SgrA*, LRR, Planetary motion, ...

= most gravity experiments require to study the motion!

Possibilities:
@ extreme mass ratio approximation, self-force
@ Full numeric simulations (still computationally very expensive)
@ post-Minkowskian approximation (weak field)
@ post-Newtonian (PN) approximation (weak field & slow motion)
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Motion in General Relativity

Motivation:

@ Gravitational wave experiments: Advanced LIGO in 2015
(possibly >40 detections of binary NS mergers per year)

@ Pulsar timing via radio astronomy: double pulsar, SKA, ...
(also optical: WD+WD binary J0651+2844)

@ Formation of supermassive BH vs. gravitational recoil ("kick”)
@ Gravity Probe B
@ SgrA*, LRR, Planetary motion, ...

= most gravity experiments require to study the motion!

Possibilities:
@ extreme mass ratio approximation, self-force
@ Full numeric simulations (still computationally very expensive)
@ post-Minkowskian approximation (weak field)
@ post-Newtonian (PN) approximation (weak field & slow motion)
= when the parameter space is large, analytic methods are invaluable.

Jan Steinhoff (ZARM) Analytic approximations for gravitational interaction Bremen, April 23th, 2013



Outline

9 Multipole approximation
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Multipole Approximation

Equations of motion:

Dp,

ar =0

Singular energy momentum tensor, d(4) = d(x7 — z7):

v=aT ) = [ o Ui

@ Geodesic equation: momentum p,,
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Multipole Approximation

Equations of motion:

Do, o !

e e
Dj“” = 2p[ﬂ UU]
T

Singular energy momentum tensor, d(4) = d(x7 — z7):
V=gTH (x7) = / dr [u(ﬂp%@) + (u(“S”)"6(4))

[l

@ Geodesic equation: momentum p,,
@ Mathisson (1937), Papapetrou (1951):  spin / dipole S
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Multipole Approximation

Equations of motion:

D 1 A
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Singular energy momentum tensor, d(4) = d(x7 — z7):

V=gTH (x7) = / dr [uwp”)(s@) + (u(“S”)"6(4))

[l

1 14 (0% 2 L pr
+§Raﬁp(“J )b 5(4)—§(J‘ B 5(4))H(o¢,6’)+"'
@ Geodesic equation: momentum p,,
@ Mathisson (1937), Papapetrou (1951):  spin / dipole S
@ Dixon (~1974): quadrupole J#e8 ..
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Multipole Approximation

Equations of motion:

D 1 A
% =0 _ERW"SOU/)SJ” _éRupﬂa;uJupﬁw + ...
nz /
Dj _ 2p[ﬂuu] +%Ra5p[“‘_/y]pﬁo‘ + ..
T

Singular energy momentum tensor, d(4) = d(x7 — z7):

V=gTH (x7) = / dr [u(ﬂp%@) + (u(“S”)"6(4))

[l

1 14 (0% 2 L pr
+§Raﬁp(uJ )b 5(4)—§(J‘ B 5(4))H(o¢,6’)+"'
@ Geodesic equation: momentum p,,
@ Mathisson (1937), Papapetrou (1951):  spin / dipole S
@ Dixon (~1974): quadrupole J#e8 ..

@ EOM for p, and S** follow from theory! T#”., =0 ~ EOM
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Spin Action in GR

Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Steinhoff, Schafer (2009)

@ Angular 4-velocity tensor from Lorentz matrix AA”:

D/\Au
=

QMY = —QVF = \gH

@ Lagrangian with minimal coupling:

1
L=m/—u,ur + és,wsw + ...
N—_——

@ m = const
@ Valid to linear order in spin
@ Angular velocity vector is Q' = 1¢;%. Analogous for spin.
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Spin Action in GR

Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Steinhoff, Schafer (2009)

@ Angular 4-velocity tensor from Lorentz matrix AA”:
D/\Au
QW = —QVI = Ny
-

@ Lagrangian with minimal coupling:

"
L=m/—u,u*+ §SWQW + ...
N——

m = const

Valid to linear order in spin

Angular velocity vector is Q' = Jej*. Analogous for spin.
Gravito-magnetic field A; = —gio
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Canonical Variables to Linear Order in Spin

Steinhoff, Schafer (2009)

@ Method: transform action into the form [ dt(gp — H)
@ Flat spacetime: Newton-Wigner center and spin are canonical
e Canonical 2/, §j, and A are “simple” generalizations of flat space case
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Canonical Variables to Linear Order in Spin

Steinhoff, Schafer (2009)

@ Method: transform action into the form [ dt(gp — H)

@ Flat spacetime: Newton-Wigner center and spin are canonical

e Canonical 2/, §j, and A are “simple” generalizations of flat space case
@ Canonical matter momentum p;:

1
Pizpi+§skjrk/,-+...

cf. electrodynamics: pi = pi — qA;
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@ Flat spacetime: Newton-Wigner center and spin are canonical

e Canonical 2/, §j, and A are “simple” generalizations of flat space case
@ Canonical matter momentum p;:

1
Pizpi+§skjrk],-+...

cf. electrodynamics: pi = pi — qA;

@ Test-spin Hamiltonian [Barusse, Racine, Buonanno, arXiv:0907.4745]:
insert background metric into action, transform to canonical variables
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Canonical Variables to Linear Order in Spin

Steinhoff, Schafer (2009)

@ Method: transform action into the form [ dt(gp — H)

@ Flat spacetime: Newton-Wigner center and spin are canonical

e Canonical 2/, §j, and A are “simple” generalizations of flat space case
@ Canonical matter momentum p;:

1
Pizpi+§skjrk],-+...

cf. electrodynamics: pi = pi — qA;

@ Test-spin Hamiltonian [Barusse, Racine, Buonanno, arXiv:0907.4745]:
insert background metric into action, transform to canonical variables

@ Even the canonical field momentum changes (self-gravitating case)

Jan Steinhoff (ZARM) Analytic approximations for gravitational interaction Bremen, April 23th, 2013



Quadrupole Deformation due to Spin

for neutron stars: Laarakkers, Poisson (1997)

@ Here m=1.4M, a5l -
@ Dim.-less mass quadrupole: g 3:O,
@ Dim.-less spin: x 25}
@ Quadratic fit is extremely good: o 20¢
15¢F
—q~ CgseeX? 10}

® Cpse =4.3..7.4,EOS dependent ol o —5% °
o AISO depends on mass 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
@ For black holes Cgge = 1

X

see Laarakkers, Poisson gr-qc/9709033

@ modeled by nonminimal couplings in the action [Porto, Rothstein (2008)]
@ higher multipoles: Pappas, Apostolatos (2012)
@ similar for tidal deformation
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Post-Newtonian results so far

from various authors with different methods
GmPy

=1
c X

for maximally rotating objects: S=

order 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

HN
PM - H!PN L HPPN | pRSPN 8PN | fBSPN L f4PN g 5PN
LO NLO N2LO LO,R N3LO
SO + Hso + Hsg + Hgo~ + Hsg™ + Hgo
2 LO NLO N2LO LOR
. - R O W ¥
L NL N2L ,
5182 + Hsys, +Hgs, +Hss, + Hsps,
spin® + HLO + HO
spin* + Hg?

Hknown  EOM known  for Black Holes  not known (yet)

Radiation field known to 2PN order, multipoles to 2.5PN order.
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); similar model: Bini, Geralico (2013)

@ Conserved quantities:
E{)p Ea¢s 85 m

@ Circular orbits, aligned spin
@ SSC: S*¥p, =0
= p, , S fixed algebratically!

@ Binding energy:
e(le) = Es,/m—1
@ Orbital angular momentum: I,

Jan Steinhoff (ZARM)
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); similar model: Bini, Geralico (2013)

— self—force
— linear test—spin 1
" — quadratic test-spin q:;)
@ Conserved quantities: — Cyg2-quadrupole
Ea, Es,, S, m ‘ ‘ ‘ ‘ :
. . . . 72 F 3
@ Circular orbits, aligned spin v \
1077 ¢ 1
@ SSC: S*p, =0 1041
= p, , S* fixed algebratically! 3105
A 10
o 1077
@ Binding energy: 108
e(le) = Ea/m—1 109 j
@ Orbital angular momentum: I, 35 20 15 50 5.5 60
le
spin effects for & =1, Cgge = 1
@ Multipole expansion: e(le) = eo(le) + e1(le) + ea(le) + ...
. A 2 A C A
@ Scaling: e x qap, es o« —q%23, 6,5 x —Ces2 283

@ Future: derive Hamiltonian for generic orbits
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); similar model: Bini, Geralico (2013)

— self—force
— linear test—spin 1
" — quadratic test-spin ="
@ Conserved quantities: G, @-quadrupole 100
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. i . . -2 ]
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10~ ,\,
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); similar model: Bini, Geralico (2013)

— self—force
— linear test—spin
: . q
quadratic test—spin 1000

@ Conserved quantities: — Cyg2-quadrupole
Ea[l Ea¢s 85 m
—2
@ Circular orbits, aligned spin v
10™ 1
@ SSC: S*p, =0 104 \
= p, , S* fixed algebratically! 2 105} ]
A 10
o 1077
@ Binding energy: 108
e(l;) = Es,/m—1 10
@ Orbital angular momentum: I, 35 20 15 50 55 60
le
spin effects for & =1, Cgge = 1
@ Multipole expansion: e(le) = eo(le) + e1(le) + ea(le) + ...
@ Scaling: e x Qi 65 x —RE, 65 x —CreeqP

@ Future: derive Hamiltonian for generic orbits
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e Tidal effects beyond the adiabatic case
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Tidal effects beyond the adiabatic case

with S. Chakrabarti and T. Delsate, arXiv:1304.2228 [gr-qc]

@ Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
@ Resonances of orbital motion and oscillation modes of the object
@ Idea: response function for Q2 [Goldberger, Rothstein, hep-th/0511133]

Qab( /dt' ,_—ab (t t') ECd(t’)
@ Analysis in Fourier space:

incoming wave outgoing wave

Ay

@ Analogy to optics: refractive index is response, need phase shift
also: absorption from imaginary part of F(w)
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Methods and results

with S. Chakrabarti and T. Delsate, arXiv:1304.2228 [gr-qc]

@ Method: inhomogeneous Regge-Wheeler equation

2 _ &M
X () 2M\ [(1+1) - X—s
dr2

@ Analytic solutions for hom. equation are known: series of {Fy and »F;
[Mano, Suzuki, Takasugi, arXiv:gr-qc/9605057]

0.151

0.101 E
0.05¢ 1

0.00 preSSS.
O -005¢ 1

10
@
—

2]
=

UL

-0.101 E
-0.15¢ E

0.00 0.05 0.10 0.15 0.20 0.25
wR/2m
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Methods and results

with S. Chakrabarti and T. Delsate, arXiv:1304.2228 [gr-qc]

@ Method: inhomogeneous Regge-Wheeler equation

X | [(1 2M> I(1+1) — &M

¥ - == X=S5,

@ Analytic solutions for hom. equation are known: series of {Fy and »F;
[Mano, Suzuki, Takasugi, arXiv:gr-qc/9605057]

o Fit for the response: o
0.10 !

5

2
_ a; % 005F 1
F(w)_zwz_wz 3 000
n n 'f . e el
. . . O -005¢ B
@ Just like in Newtonian case! 010
@ wp are the mode frequencies 0'157 ]
@ g, related to overlap integrals 000 005 010 o015 020 o2
@ Matching scale is fitted, too wR/2n
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Future Plans

Spin corrections to radiation field:
@ Restricted waveform (phase) to 4PN order (now: 2.5PN and 3.5PN SO)
@ Full waveform (phase and amplitude) to 3.5PN (now: 2PN)
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Dynamic multipoles and tides:
@ More realistic NS models: rotation, crust, ...
@ Resonances with orbital motion
@ Instabilities of modes, shattering of crust, connection to GRB, ...
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Future Plans

Spin corrections to radiation field:

@ Restricted waveform (phase) to 4PN order (now: 2.5PN and 3.5PN SO)
@ Full waveform (phase and amplitude) to 3.5PN (now: 2PN)

Dynamic multipoles and tides:
@ More realistic NS models: rotation, crust, ...
@ Resonances with orbital motion
@ Instabilities of modes, shattering of crust, connection to GRB, ...

More Hamilton functions:

@ Test-particle Hamiltonian for small q including quadrupole:

o test-NS in the field of a Kerr BH or a "massive” NS
e Extension to comparable masses?
@ post-Newtonian Hamiltonians to 4.5PN:
o HP and H? for (neutron) stars
o Hi'© at4PN
o HYS© and HYO at 4.5PN (later)
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